Hybrid optimization scheme for intrusion detection using considerable feature selection

2019 ◽  
Vol 32 (12) ◽  
pp. 7925-7939 ◽  
Author(s):  
S. Velliangiri ◽  
P. Karthikeyan
2018 ◽  
Vol 7 (1) ◽  
pp. 57-72
Author(s):  
H.P. Vinutha ◽  
Poornima Basavaraju

Day by day network security is becoming more challenging task. Intrusion detection systems (IDSs) are one of the methods used to monitor the network activities. Data mining algorithms play a major role in the field of IDS. NSL-KDD'99 dataset is used to study the network traffic pattern which helps us to identify possible attacks takes place on the network. The dataset contains 41 attributes and one class attribute categorized as normal, DoS, Probe, R2L and U2R. In proposed methodology, it is necessary to reduce the false positive rate and improve the detection rate by reducing the dimensionality of the dataset, use of all 41 attributes in detection technology is not good practices. Four different feature selection methods like Chi-Square, SU, Gain Ratio and Information Gain feature are used to evaluate the attributes and unimportant features are removed to reduce the dimension of the data. Ensemble classification techniques like Boosting, Bagging, Stacking and Voting are used to observe the detection rate separately with three base algorithms called Decision stump, J48 and Random forest.


Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  

Author(s):  
Silvio E. Quincozes ◽  
Daniel Mosse ◽  
Diego Passos ◽  
Celio Albuquerque ◽  
Luiz Satoru Ochi ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joffrey L. Leevy ◽  
John Hancock ◽  
Richard Zuech ◽  
Taghi M. Khoshgoftaar

AbstractMachine learning algorithms efficiently trained on intrusion detection datasets can detect network traffic capable of jeopardizing an information system. In this study, we use the CSE-CIC-IDS2018 dataset to investigate ensemble feature selection on the performance of seven classifiers. CSE-CIC-IDS2018 is big data (about 16,000,000 instances), publicly available, modern, and covers a wide range of realistic attack types. Our contribution is centered around answers to three research questions. The first question is, “Does feature selection impact performance of classifiers in terms of Area Under the Receiver Operating Characteristic Curve (AUC) and F1-score?” The second question is, “Does including the Destination_Port categorical feature significantly impact performance of LightGBM and Catboost in terms of AUC and F1-score?” The third question is, “Does the choice of classifier: Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), Catboost, LightGBM, or XGBoost, significantly impact performance in terms of AUC and F1-score?” These research questions are all answered in the affirmative and provide valuable, practical information for the development of an efficient intrusion detection model. To the best of our knowledge, we are the first to use an ensemble feature selection technique with the CSE-CIC-IDS2018 dataset.


2020 ◽  
pp. 1-20
Author(s):  
K. Muthamil Sudar ◽  
P. Deepalakshmi

Software-defined networking is a new paradigm that overcomes problems associated with traditional network architecture by separating the control logic from data plane devices. It also enhances performance by providing a highly-programmable interface that adapts to dynamic changes in network policies. As software-defined networking controllers are prone to single-point failures, providing security is one of the biggest challenges in this framework. This paper intends to provide an intrusion detection mechanism in both the control plane and data plane to secure the controller and forwarding devices respectively. In the control plane, we imposed a flow-based intrusion detection system that inspects every new incoming flow towards the controller. In the data plane, we assigned a signature-based intrusion detection system to inspect traffic between Open Flow switches using port mirroring to analyse and detect malicious activity. Our flow-based system works with the help of trained, multi-layer machine learning-based classifier, while our signature-based system works with rule-based classifiers using the Snort intrusion detection system. The ensemble feature selection technique we adopted in the flow-based system helps to identify the prominent features and hasten the classification process. Our proposed work ensures a high level of security in the Software-defined networking environment by working simultaneously in both control plane and data plane.


Sign in / Sign up

Export Citation Format

Share Document