Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear fractional Laplacian problems

Author(s):  
Bingliang Li ◽  
Yongqiang Fu
2016 ◽  
Vol 5 (1) ◽  
pp. 57-74 ◽  
Author(s):  
Jacques Giacomoni ◽  
Pawan Kumar Mishra ◽  
K. Sreenadh

AbstractWe study the existence of positive solutions for fractional elliptic equations of the type (-Δ)1/2u = h(u), u > 0 in (-1,1), u = 0 in ℝ∖(-1,1) where h is a real valued function that behaves like eu2 as u → ∞ . Here (-Δ)1/2 is the fractional Laplacian operator. We show the existence of mountain-pass solution when the nonlinearity is superlinear near t = 0. In case h is concave near t = 0, we show the existence of multiple solutions for suitable range of λ by analyzing the fibering maps and the corresponding Nehari manifold.


2019 ◽  
Vol 21 (02) ◽  
pp. 1850005 ◽  
Author(s):  
Ran Zhuo ◽  
Yan Li

We study Navier problems involving the higher-order fractional Laplacians. We first obtain nonexistence of positive solutions, known as the Liouville-type theorems, in the upper half-space [Formula: see text] by studying an equivalent integral form of the fractional equation. Then we show symmetry for positive solutions on [Formula: see text] through a delicate iteration between lower-order differential/pseudo-differential equations split from the higher-order equation.


Filomat ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1795-1807
Author(s):  
Lijuan Liu

We consider the fractional Laplacian with positive Dirichlet data { (-?)?/2 u = ?up in ?, u > 0 in ?, u = ? in Rn\?, where p > 1,0 < ? < min{2,n}, ? ? Rn is a smooth bounded domain, ? is a nonnegative function, positive somewhere and satisfying some other conditions. We prove that there exists ?* > 0 such that for any 0 < ? < ?*, the problem admits at least one positive classical solution; for ? > ?*, the problem admits no classical solution. Moreover, for 1 < p ? n+?/n-?, there exists 0 < ?? ? ?* such that for any 0 < ? < ??, the problem admits a second positive classical solution. From the results obtained, we can see that the existence results of the fractional Laplacian with positive Dirichlet data are quite different from the fractional Laplacian with zero Dirichlet data.


Author(s):  
Wei Dai ◽  
Zhao Liu ◽  
Pengyan Wang

In this paper, we are concerned with the following Dirichlet problem for nonlinear equations involving the fractional [Formula: see text]-Laplacian: [Formula: see text] where [Formula: see text] is a bounded or an unbounded domain which is convex in [Formula: see text]-direction, and [Formula: see text] is the fractional [Formula: see text]-Laplacian operator defined by [Formula: see text] Under some mild assumptions on the nonlinearity [Formula: see text], we establish the monotonicity and symmetry of positive solutions to the nonlinear equations involving the fractional [Formula: see text]-Laplacian in both bounded and unbounded domains. Our results are extensions of Chen and Li [Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018) 735–758] and Cheng et al. [The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math. 19(6) (2017) 1750018].


2014 ◽  
Vol 16 (01) ◽  
pp. 1350023 ◽  
Author(s):  
PATRICIO FELMER ◽  
YING WANG

The aim of this paper is to study radial symmetry and monotonicity properties for positive solution of elliptic equations involving the fractional Laplacian. We first consider the semi-linear Dirichlet problem [Formula: see text] where (-Δ)αdenotes the fractional Laplacian, α ∈ (0, 1), and B1denotes the open unit ball centered at the origin in ℝNwith N ≥ 2. The function f : [0, ∞) → ℝ is assumed to be locally Lipschitz continuous and g : B1→ ℝ is radially symmetric and decreasing in |x|. In the second place we consider radial symmetry of positive solutions for the equation [Formula: see text] with u decaying at infinity and f satisfying some extra hypothesis, but possibly being non-increasing.Our third goal is to consider radial symmetry of positive solutions for system of the form [Formula: see text] where α1, α2∈(0, 1), the functions f1and f2are locally Lipschitz continuous and increasing in [0, ∞), and the functions g1and g2are radially symmetric and decreasing. We prove our results through the method of moving planes, using the recently proved ABP estimates for the fractional Laplacian. We use a truncation technique to overcome the difficulty introduced by the non-local character of the differential operator in the application of the moving planes.


2018 ◽  
Vol 20 (03) ◽  
pp. 1750032 ◽  
Author(s):  
Alexander Quaas ◽  
Aliang Xia

In this paper, we prove existence results of positive solutions for the following nonlinear elliptic problem with gradient terms: [Formula: see text] where [Formula: see text] denotes the fractional Laplacian and [Formula: see text] is a smooth bounded domain in [Formula: see text]. It shown that under some assumptions on [Formula: see text] and [Formula: see text], the problem has at least one positive solution [Formula: see text]. Our proof is based on the classical scaling method of Gidas and Spruck and topological degree theory.


Sign in / Sign up

Export Citation Format

Share Document