weyl curvature
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Francisco Fernández-Álvarez ◽  
Jose M M Senovilla

Abstract This is the first of two papers [1] devoted to the asymptotic structure of space-time in the presence of a non-negative cosmological constant Λ. This first paper is concerned with the case of Λ = 0. Our approach is fully based on the tidal nature of the gravitational field and therefore on the ‘tidal energies’ built with the Weyl curvature. In particular, we use the (radiant) asymptotic supermomenta computed from the rescaled Weyl tensor at infinity to provide a novel characterisation of radiation escaping from, or entering into, the space-time. Our new criterion is easy to implement and shown to be fully equivalent to the classical one based on the news tensor. One of its virtues is that its formulation can be easily adapted to the case with Λ > 0 covered in the second paper. We derive the general energy-momentum-loss formulae including the matter terms and all factors associated to the choices of arbitrary foliation and of super- translation. We also revisit and present a full reformulation of the traditional peeling behaviour with a neat geometrical construction that leads, in particular, to an asymptotic alignment of the supermomenta in accordance with the radiation criterion.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 424
Author(s):  
Bei-Lok Hu

The Weyl curvature constitutes the radiative sector of the Riemann curvature tensor and gives a measure of the anisotropy and inhomogeneities of spacetime. Penrose’s 1979 Weyl curvature hypothesis (WCH) assumes that the universe began at a very low gravitational entropy state, corresponding to zero Weyl curvature, namely, the Friedmann–Lemaître–Robertson–Walker (FLRW) universe. This is a simple assumption with far-reaching implications. In classical general relativity, Belinsky, Khalatnikov and Lifshitz (BKL) showed in the 70s that the most general cosmological solutions of the Einstein equation are that of the inhomogeneous Kasner types, with intermittent alteration of the one direction of contraction (in the cosmological expansion phase), according to the mixmaster dynamics of Misner (M). How could WCH and BKL-M co-exist? An answer was provided in the 80s with the consideration of quantum field processes such as vacuum particle creation, which was copious at the Planck time (10−43 s), and their backreaction effects were shown to be so powerful as to rapidly damp away the irregularities in the geometry. It was proposed that the vaccum viscosity due to particle creation can act as an efficient transducer of gravitational entropy (large for BKL-M) to matter entropy, keeping the universe at that very early time in a state commensurate with the WCH. In this essay I expand the scope of that inquiry to a broader range, asking how the WCH would fare with various cosmological theories, from classical to semiclassical to quantum, focusing on their predictions near the cosmological singularities (past and future) or avoidance thereof, allowing the Universe to encounter different scenarios, such as undergoing a phase transition or a bounce. WCH is of special importance to cyclic cosmologies, because any slight irregularity toward the end of one cycle will generate greater anisotropy and inhomogeneities in the next cycle. We point out that regardless of what other processes may be present near the beginning and the end states of the universe, the backreaction effects of quantum field processes probably serve as the best guarantor of WCH because these vacuum processes are ubiquitous, powerful and efficient in dissipating the irregularities to effectively nudge the Universe to a near-zero Weyl curvature condition.


Author(s):  
Robert Brandenberger ◽  
Lavinia Heisenberg ◽  
Jakob Robnik

We show that an S-brane which arises in the inside of the black hole horizon when the Weyl curvature reaches the string scale induces a continuous transition between the inside of the black hole and the beginning of a new universe. This provides a simultaneous resolution of both the black hole and Big Bang singularities. In this context, the black hole information loss problem is also naturally resolved.


2021 ◽  
Vol 21 (3) ◽  
pp. 783-788
Author(s):  
MURADİYE ÇİMDİKER ASLAN ◽  
YASİN ÜNLÜTÜRK ◽  
CUMALİ EKİCİ

A basic goal of this paper is to calculate, Weyl curvature of R-flat (Ricci-flat) spray of isotropic curvature and a locally projectively R-flat (Ricci-flat) spray, which is a projective invariance. Besides, the equivalents of E ̅-curvature and H-curvature that are closely related to the mean Berwald curvature have been found for a locally projectively R-flat spray of isotropic curvature.


2021 ◽  
pp. 1-11
Author(s):  
H. BALTAZAR ◽  
M. MATOS NETO

Abstract The aim of this paper is to study complete (noncompact) m-quasi-Einstein manifolds with λ=0 satisfying a fourth-order vanishing condition on the Weyl tensor and zero radial Weyl curvature. In this case, we are able to prove that an m-quasi-Einstein manifold (m>1) with λ=0 on a simply connected n-dimensional manifold(M n , g), (n ≥ 4), of nonnegative Ricci curvature and zero radial Weyl curvature must be a warped product with (n–1)–dimensional Einstein fiber, provided that M has fourth-order divergence-free Weyl tensor (i.e. div4W =0).


Author(s):  
Manisha Maheshkumar Kankarej

In the present paper, I studied different types of Curvature like Riemannian Curvature, Concircular Curvature, Weyl Curvature, and Projective Curvature in Quarter Symmetric non-Metric Connection in P-Sasakian manifold. A comparative study of a manifold with a Riemannian connection is done with a P-Sasakian Manifold. Conditions for vanishing for different types of curvature are also a part of the study. Some necessary properties of the Hessian operator are discussed with respect to all curvatures as well.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Robert Brandenberger ◽  
Lavinia Heisenberg ◽  
Jakob Robnik

Abstract We propose a construction with which to resolve the black hole singularity and enable an anisotropic cosmology to emerge from the inside of the hole. The model relies on the addition of an S-brane to the effective action which describes the geometry of space-time. This space-like defect is located inside of the horizon on a surface where the Weyl curvature reaches a limiting value. We study how metric fluctuations evolve from the outside of the black hole to the beginning of the cosmological phase to the future of the S-brane. Our setup addresses i) the black hole singularity problem, ii) the cosmological singularity problem and iii) the information loss paradox since the outgoing Hawking radiation is entangled with the state inside the black hole which becomes the new universe.


Author(s):  
Samarjit Chakraborty ◽  
Sarbari Guha ◽  
Rituparno Goswami

In this paper, we investigate the entropy of the free gravitational field for a given epoch for some well-known isotropic and anisotropic cosmologies. We use the definition of gravitational entropy proposed by Clifton, Ellis and Tavakol, where the 2-index square root of the 4-index Bel–Robinson tensor is taken to be the energy– momentum tensor for the free gravity. We examine whether in the vicinity of the initial singularity, the ratio of energy density of free gravity to that of matter density goes to zero, validating Penrose conjecture on Weyl curvature. Whenever this is true, the gravitational entropy increases monotonically with time, leading to structure formation. For the models considered by us, we identify the conditions for which the Weyl curvature hypothesis is valid, and the assumptions under which it is validated, or otherwise.


Sign in / Sign up

Export Citation Format

Share Document