Bayesian traffic dynamics and packet loss prediction for video over IP networks

2006 ◽  
Vol 11 (5) ◽  
pp. 468-479 ◽  
Author(s):  
Andrew Backhouse ◽  
Irene Y. H. Gu
2019 ◽  
Vol 28 (4) ◽  
pp. 048901
Author(s):  
Jie Chen ◽  
Jin-Yong Chen ◽  
Ming Li ◽  
Mao-Bin Hu

Author(s):  
Homero Toral-Cruz ◽  
Deni Torres-Román ◽  
Leopoldo Estrada-Vargas

Our studies have revealed that VoIP jitter can be modeled by self-similar processes, and through a decomposition based on Haar wavelet it is shown a possible reason of the presence of long range dependence (LRD) in VoIP jitter. On the other hand, we used a description of VoIP packet loss based on microscopic and macroscopic packet loss behaviors, where these behaviors can be modeled by 2-state and 4-state Markov chains, respectively. Besides, the distributions of the number of consecutive received and lost packets (namely gap and burst, respectively) are modeled from the transition probabilities of 2-state and 4-state Markov chains. Based on the above mentioned description, we presented a methodology for simulating packet loss and proposed a new model that allows to relate the Hurst parameter (H) with the packet loss rate (PLR). These models can be used by other researchers as input to problems related to the design of VoIP applications, performance evaluation of IP networks, and the implementation of QoS mechanisms on convergent networks.


Author(s):  
Pertik Garg ◽  
Ashu Gupta

Some high speed IP networks, which involve interior gateway protocols, such as OSPF, are not capable of finding the new routes to bypass the effect like failure in time. At the point when the failure occurs the network must converge it before the traffic has the capacity to go to and from the network segment that caused a connection disconnect. The duration of the convergence period of these protocols vary from hundred of milliseconds to 10 seconds, which creates unsteadiness and results high packet loss rate. This issue may be determined by proposing an algorithm that can rapidly react to the topology change and reduce the convergence time by providing back up path which is already stored in routing table before the failover occurs.


2021 ◽  
Vol 2021 (12) ◽  
pp. 123402
Author(s):  
Qing Wu ◽  
Qing-Yang Liu ◽  
Xiang Ling ◽  
Li-Jun Zhang

Abstract In real communication or transportation systems, loss of agents is very common due to finite storage capacity. We study the traffic dynamics in finite buffer networks and propose a routing strategy motivated by a heuristic algorithm to alleviate packet loss. Under this routing strategy, the traffic capacity is further improved, comparing to the shortest path routing strategy and efficient routing strategy. Then we investigate the effect of this routing strategy on the betweenness of nodes. Through dynamic routing changes, the maximum node betweenness of the network is greatly reduced, and the final betweenness of each node is almost the same. Therefore, the routing strategy proposed in this paper can balance the node load, thereby effectively alleviating packet loss.


Sign in / Sign up

Export Citation Format

Share Document