Hard-particle-induced physical damage and demagnetization in the head-disk interface

2013 ◽  
Vol 19 (9-10) ◽  
pp. 1313-1317 ◽  
Author(s):  
Jia Zhao ◽  
Shaomin Xiong ◽  
David B. Bogy ◽  
Kun Sun ◽  
Liang Fang
2007 ◽  
Vol 129 (4) ◽  
pp. 729-734 ◽  
Author(s):  
M. Roy ◽  
J. L. Brand

With ever increasing areal density, interactions of particles with a head-disk interface become an ever more important factor impacting the drive reliability. Although particles trapped between the head and the disk could induce mechanical damage to the media resulting in permanent loss of data, data loss has also been observed without any obvious signs of physical damage to the media. We devised a component-level test to study this mode of data erasure on both glass and aluminium media. Our data indicate that the frictional heating associated with contact force between the particle and the disk could lead to permanent loss of data. In addition, we performed investigations to study the impact of air bearing design features, load/unload mechanism, and particle number density on the head disk interface.


1999 ◽  
Vol 121 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Kenneth J. Altshuler ◽  
Joshua C. Harrison ◽  
Evelyn Ackerman

The physical damage at the Head-Disk Interface (HDI), caused by common ceramic particles found in the manufacturing environments of the heads and disks in hard magnetic disk drives, is reported. The need for this study arises from industry wide reliability problems due to particulate induced damage at the HDL The intent of this study is to characterize the head/disk damage caused by 1 μm diamond, 1–2 pm Tie particles, 0.2–1 μm alumina particles, the alumina and TiC grains sintered to make Al-TiC (the slider body), and sputtered alumina. These particles were introduced to the HDI in over thirty disk drives. The drives were then made to perform magnetic recording and retrieval operations for known data sequences, with the resultant reading errors tabulated. After the functional testing, the drives were opened and resulting damage was examined with a number of surface characterization tools. This study confirms that the severity of problems with the read-back signal, caused by particle damage, has an inverse relationship with the magnetic track width. In addition, the harshness of physical damage to the HDI has a positive relationship with particle hardness. Finally, particle shape and size can be contributing factors in damaging the HDL.


2005 ◽  
Vol 97 (12) ◽  
pp. 126106 ◽  
Author(s):  
Raymond R. Dagastine ◽  
Lee R. White ◽  
Paul M. Jones ◽  
Yiao-Tee Hsia

2014 ◽  
Vol 50 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Bruno Marchon ◽  
Xing-Cai Guo ◽  
Bala Krishna Pathem ◽  
Franck Rose ◽  
Qing Dai ◽  
...  

Author(s):  
Bo Liu ◽  
MingSheng Zhang ◽  
Yijun Man ◽  
Shengkai Yu ◽  
Gonzaga Leonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document