Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil

Mycorrhiza ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Alexandre Bourles ◽  
Linda Guentas ◽  
César Charvis ◽  
Simon Gensous ◽  
Clarisse Majorel ◽  
...  
Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 322
Author(s):  
Rui-Cheng Liu ◽  
Zhi-Yan Xiao ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Yong-Jie Xu ◽  
...  

Camellia is a genus of evergreen shrubs or trees, such as C. japonica, C. sinensis, C. oleifera, etc. A group of beneficial soil microorganisms, arbuscular mycorrhizal fungi (AMF), inhabit the rhizosphere of these Camellia spp. A total of eight genera of Acaulospora, Entrophospora, Funneliformis, Gigaspora, Glomus, Pacispora, Scutellospora, and Sclerocystis were found to be associated with Camellia plants with Glomus and/or Acaulospora being most abundant. These mycorrhizal fungi can colonize the roots of Camellia spp. and thus form arbuscular mycorrhizal symbionts. AMF is an important partner of Camellia spp. in the field of physiological activities. Studies indicated that AMF inoculation has been shown to promote plant growth, improve nutrient acquisition and nutritional quality, and increase resistance to drought, salinity and heavy metal contamination in potted Camellia. This review thus provides a comprehensive overview of AMF species occurring in the rhizosphere of Camellia spp. and summarizes the variation in root AMF colonization rate as well as the environmental factors and soil nutrients affecting root colonization. The paper also reviews the effects of AMF on plant growth response, nutrient acquisition, food quality, and stress tolerance of Camellia spp.


2016 ◽  
Vol 22 ◽  
pp. 45-51
Author(s):  
KP Gabriel ◽  
HC Lakshman ◽  
Tanzima Yeasmin

Context: Arbuscular-Mycorrhizal fungi colonization in roots of many plants promotes the increased nutrient uptake especially the phosphorus from phosphorus deficient soil.Objective: To compare the efficacy of different concentration of recommended dosages of super phosphate fertilizers with inoculation of AM fungi to evaluate growth, nutrients uptake on Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18).Materials and Methods: The effect of two Arbuscular mycorrhizal fungi Scutellospora nigra and Glomus mosseae with 4 different dosage (25%, 50%, 75%, 100% ) of superphosphate (P2O5) was treated on growth yield and nutrient uptake in Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18) was evaluated under greenhouse conditions. Pots were watered they were harvested once in 30 days intervals. For 90 days the following readings viz., plant height, root length, biomass, grains yield, percent root colonization, spore number macro-micro nutrients contents in shoots and roots were determined.Results: Scutellospora nigra with 50% RDSP/kg showed a significant increase in the plant growth biomass of shoot and root of Guizotia abyssinica (L.f) Cass. var, RCR-18. Percent root colonization, seed number and N, P, K and Zn, Mg uptake in shoot and root.Conclusion: Overall, our results clearly suggest that synergistic and additive mechanisms involved can enhances the plant growth, nutrient uptake and adaptation to unfavorable drought soil conditions.J. bio-sci. 22: 45-51, 2014


2015 ◽  
Vol 4 (2) ◽  
pp. 428-437 ◽  
Author(s):  
Rakiya Abdullahi ◽  
Lihan S ◽  
Edward R ◽  
Demie L S

Public concerned about food safety and quality have raised interest in manipulating soil nutrients management strategies that could reduce potential threat on environment and sustain food production. Recently, the application of arbuscular mycorrhizal fungi (AMF)as bio-fertilizer has gained recognition especially, in low-input agriculture. The fungi are known to improve plant nutrition and growth. However, this effect may differ according to soil properties and nutrients concentration. A greenhouse experiment was conducted to investigate the effect of AMF and poultry manure (PM) on growth and nutrients contents in maize compared to chemical fertilizer; and to determine the effect of soil properties on colonization potential of AMF. The experiment consists of 13 treatments combinations in 2 soil types (loam and peat), viz; 6 application rates of composted PM in tones (t) ha-1 (0, 4, 6, 8, 10 and 12) and 2 levels of AMF; inoculated (+AMF) and un-inoculated (-AMF) plus recommended dose of NPK (RD NPK). Un-inoculated plants showed no symptoms of root colonization and recorded no AMF spore under both soils. Addition of PM stimulated AMF colonization and sporulation, the highest root colonization (RC %) and spore counts were recorded at 8 t PM+AMF under loam and 12 t PM+AMF in peat soils. Shoot dry biomass at 8 and 12 t PM+AMF under loam and peat were comparable to RD NPK. Applying 8 and 12 t PM+AMF in loam and peat recorded the highest N& K comparable to RD NPK. However, P content in shoot were statistically higher at 8,10 & 12 t PM+AMF in loam and at 12 t PM+AMF in peat compared to RD NPK. Application of 10 & 12 t PM+AMF in loam significantly decreased plant growth, lowered AMF RC%, and nutrient content (N & K). There was a strong positive correlation between shoot dry biomass and RC % in loam (R2= 0.740 P<0.01) and peat (R2=0.884 P<0.01). From the results of this study, it could be concluded that AMF have increased the efficiency use of PM and their integration have the potential to improve plant growth due to enhanced nutrients  uptake and stimulated RC% in both soils. Results also indicated significantly higher shoot dry biomass, nutrients content (N, P, & K), spore counts and RC % in loam soil compared to peat, indicating that soil properties has a significant influence on effectiveness AMF. 


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Heliyon ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. e00936 ◽  
Author(s):  
Boubacar A. Kountche ◽  
Mara Novero ◽  
Muhammad Jamil ◽  
Tadao Asami ◽  
Paola Bonfante ◽  
...  

1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Sign in / Sign up

Export Citation Format

Share Document