scholarly journals On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

2000 ◽  
Vol 18 (12) ◽  
pp. 1523-1530 ◽  
Author(s):  
M. Pinnock ◽  
A. S. Rodger

Abstract. Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection) · Magnetospheric physics (magnetopause · cusp · and boundary layers)

2002 ◽  
Vol 20 (4) ◽  
pp. 501-509 ◽  
Author(s):  
E. E. Woodfield ◽  
J. A. Davies ◽  
P. Eglitis ◽  
M. Lester

Abstract. The aim of this paper is to advance the current understanding of the spectral width parameter observed by coherent high frequency (HF) radars. In particular, we address the relationship of a frequently observed gradient, between low ( < 200 m/s) and high ( > 200 m/s) spectral width, to magnetospheric boundaries. Previous work has linked this gradient in the spectral width, in the nightside sector of magnetic local time, to the Polar Cap Boundary (PCB), and also to the boundary between the Central Plasma Sheet (CPS) and the Plasma Sheet Boundary Layer (PSBL). The present case study investigates the former by comparison with the 630.0 nm optical emission. No suitable data were available to test the second of the two hypotheses. It is found that during the interval in question the spectral width gradient is within the region of the 630.0 nm optical emission. A comparison of coherent and incoherent scatter radar data is also conducted, which indicates that values of high spectral width are typically collocated with elevated F-region electron temperatures. We conclude that the high spectral width region in the interval under study is associated with particle precipitation and also that the spectral width gradient is not a reliable method for locating the PCB.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities)


2003 ◽  
Vol 21 (5) ◽  
pp. 1121-1140 ◽  
Author(s):  
S. E. Milan ◽  
M. Lester ◽  
S. W. H. Cowley ◽  
K. Oksavik ◽  
M. Brittnacher ◽  
...  

Abstract. This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI) instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP) and National Oceanographic and Atmospheric Administration (NOAA) satellites, and the Fast Auroral SnapshoT (FAST) spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere) – Magnetospheric physics (magnetospheric configuration and dynamics)


1999 ◽  
Vol 17 (2) ◽  
pp. 159-172 ◽  
Author(s):  
S. E. Milan ◽  
M. Lester ◽  
S. W. H. Cowley ◽  
J. Moen ◽  
P. E. Sandholt ◽  
...  

Abstract. The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, "braiding" of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.Key words. Ionosphere (auroral ionosphere; plasma convection) · Magnetospheric physics (magnetopause · cusp · and boundary layers)


2000 ◽  
Vol 18 (4) ◽  
pp. 445-453 ◽  
Author(s):  
K. A. McWilliams ◽  
T. K. Yeoman ◽  
G. Provan

Abstract. Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions)


1996 ◽  
Vol 14 (5) ◽  
pp. 533-537 ◽  
Author(s):  
A. S. Rodger ◽  
A. C. Graham

Abstract. Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994) when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.


2002 ◽  
Vol 20 (1) ◽  
pp. 29-40 ◽  
Author(s):  
G. Chisham ◽  
M. Pinnock ◽  
I. J. Coleman ◽  
M. R. Hairston ◽  
A. D. M. Walker

Abstract. The HF radar Doppler spectral width boundary (SWB) in the cusp represents a very good proxy for the equatorward edge of cusp ion precipitation in the dayside ionosphere. For intervals where the Interplanetary Magnetic Field (IMF) has a southward component (Bz < 0), the SWB is typically displaced poleward of the actual location of the open-closed field line boundary (or polar cap boundary, PCB). This is due to the poleward motion of newly-reconnected magnetic field lines during the cusp ion travel time from the reconnection X-line to the ionosphere. This paper presents observations of the dayside ionosphere from SuperDARN HF radars in Antarctica during an extended interval ( ~ 12 h) of quasi-steady IMF conditions (By ~ Bz < 0). The observations show a quasi-stationary feature in the SWB in the morning sector close to magnetic local noon which takes the form of a 2° poleward distortion of the boundary. We suggest that two separate reconnection sites exist on the magnetopause at this time, as predicted by the anti-parallel merging hypothesis for these IMF conditions. The observed cusp geometry is a consequence of different ion travel times from the reconnection X-lines to the southern ionosphere on either side of magnetic local noon. These observations provide strong evidence to support the anti-parallel merging hypothesis. This work also shows that mesoscale and small-scale structure in the SWB cannot always be interpreted as reflecting structure in the dayside PCB. Localised variations in the convection flow across the merging gap, or in the ion travel time from the reconnection X-line to the ionosphere, can lead to localised variations in the offset of the SWB from the PCB. These caveats should also be considered when working with other proxies for the dayside PCB which are associated with cusp particle precipitation, such as the 630 nm cusp auroral emission.Key words. Ionosphere (plasma convection) – Magnetospheric physics (magnetopause, cusp, and boundary layers) – Space plasma physics (magnetic reconnection)


2000 ◽  
Vol 18 (1) ◽  
pp. 90-98 ◽  
Author(s):  
S. E. Pryse ◽  
A. M. Smith ◽  
L. Kersley ◽  
I. K. Walker ◽  
C. N. Mitchell ◽  
...  

Abstract. Observations are presented of the polar ionosphere under steady, northward IMF. The measurements, made by six complementary experimental techniques, including radio tomography, all-sky and meridian scanning photometer optical imaging, incoherent and coherent scatter radars and satellite particle detection, reveal plasma parameters consistent with ionospheric signatures of lobe reconnection. The optical green-line footprint of the reconnection site is seen to lie in the sunward plasma convection of the lobe cells. Downstream in the region of softer precipitation the reverse energy dispersion of the incoming ions can be identified. A steep latitudinal density gradient at the equatorward edge of the precipitation identifies the general location of an adiaroic boundary, separating the open field lines of polar lobe cells from the closed field of viscous-driven cells. Enhancements in plasma density to the south of the gradient are interpreted as ionisation being reconfigured as it is thrust against the boundary by the antisunward flow of the viscous cells near noon. Each of the instruments individually provides valuable information on certain aspects of the ionosphere, but the paper demonstrates that taken together the different experiments complement each other to give a consistent and comprehensive picture of the dayside polar ionosphere..Key words. Ionosphere (polar ionosphere) · Magnetospheric physics (magnetosphere-ionosphere interactions; polar cap phenomena)


2005 ◽  
Vol 23 (7) ◽  
pp. 2599-2604 ◽  
Author(s):  
G. Chisham ◽  
M. P. Freeman ◽  
T. Sotirelis ◽  
R. A. Greenwald

Abstract. Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB) is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs) measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN), with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP) spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997–2001) of data measured in the 1000–1400 magnetic local time (MLT) range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection) – Magnetospheric physics (Magnetopause, cusp and boundary layers)


2002 ◽  
Vol 20 (9) ◽  
pp. 1399-1413 ◽  
Author(s):  
E. E. Woodfield ◽  
J. A. Davies ◽  
M. Lester ◽  
T. K. Yeoman ◽  
P. Eglitis ◽  
...  

Abstract. A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1) exists poleward of a region of low HF spectral width (<200 ms-1). Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT) on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1) have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the regions of high spectral width are observed both on closed and open field lines the use of the boundary between low and high spectral width as an ionospheric proxy for the open/closed field line boundary is not a simple matter, if indeed it is possible at all.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities)


2010 ◽  
Vol 28 (4) ◽  
pp. 969-976 ◽  
Author(s):  
H. Wang ◽  
H. Lühr ◽  
A. J. Ridley

Abstract. In this work, we have shown that the ionospheric azimuthal plasma velocity jets near the open-closed field line boundary on the nightside can be associated with the peak in the ionospheric conductivity gradient. Both model and DMSP observations have been utilized to conduct this investigation. The model tests show that when the gradient of conductivity in the poleward boundary becomes sharper, convection peaks appear around the poleward edge of the aurora. The model results have been confirmed by DMSP observations. Hundreds of large ion flow events are identified from one year DMSP observations, with flow speed larger than 500 m/s that occurred poleward of the aurora. Among them, 280 (74%) events are found to be associated with conductivity gradient peaks. Most of the convection jets occur in winter when conductivity gradients are expected to be large. The convection jets tend to occur at later local times (21:00–22:00 MLT) at 70°–72° MLat. These events are preceded by increasing of the merging electric field suggesting that they occur after the expansion of the polar cap. Both observation and model results show that the conductivity gradient at the polar cap boundary are one of the important elements in establishing the convection jets.


Sign in / Sign up

Export Citation Format

Share Document