scholarly journals Disturbed vertical E×B plasma drifts in the equatorial F2 region at solar minimum deduced from observed NmF2 and hmF2 variations

1996 ◽  
Vol 14 (7) ◽  
pp. 733-743 ◽  
Author(s):  
A. V. Mikhailov ◽  
M. Förster ◽  
T. Y. Leschinskaya

Abstract. Ground-based ionosonde and magnetic-field observations on the equatorial station Huancayo, ESRO4 neutral-composition measurements, and theoretical model calculations were used to analyze disturbed E×B vertical plasma drift during the phase of solar minimum in 1973. Vertical drifts calculated for disturbed days do not show the systematic decrease often mentioned in publications, and demonstrate strong dependence on IMF-Bz changes. It is confirmed with the help of our drift calculations that Bz turnings to a northward direction result in a decrease (up to reversal) of normal Sq (eastward during daytime and westward at nighttime) in the zonal component of electric field. Southward Bz excursions enhance normal Ey both in daytime and nighttime hours. Model predictions of Ey\\'s reaction to IMF-Bz changes are discussed.

2008 ◽  
Vol 56 (6) ◽  
pp. 785-789 ◽  
Author(s):  
T.L. Zhang ◽  
M. Delva ◽  
W. Baumjohann ◽  
M. Volwerk ◽  
C.T. Russell ◽  
...  

2019 ◽  
Vol 37 (5) ◽  
pp. 807-818 ◽  
Author(s):  
Laysa Cristina Araujo Resende ◽  
Clezio Marcos Denardini ◽  
Giorgio Arlan Silva Picanço ◽  
Juliano Moro ◽  
Diego Barros ◽  
...  

Abstract. F region vertical drifts (Vz) are the result of the interaction between ionospheric plasma with the zonal electric field and the Earth's magnetic field. Abrupt variations in Vz are strongly associated with the occurrence of plasma irregularities (spread F) during the nighttime periods. These irregularities are manifestations of space weather in the ionosphere's environment without necessarily requiring a solar burst. In this context, the Brazilian Space Weather Study and Monitoring Program (Embrace) of the National Institute for Space Research (INPE) has been developing different indexes to analyze these ionospheric irregularities in the Brazilian sector. Therefore, the main purpose of this work is to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity, named AV. It is based on the maximum value of Vz (Vzp), which in turn is calculated through its relationship with the virtual height parameter, h′F, measured by the Digisonde Portable Sounder (DPS-4D) installed in São Luís (2∘ S, 44∘ W; dip: −2.3∘). This index quantifies the time relationship between the Vz peak and the irregularity observed in the ionograms. Thus, in this study, we analyzed 7 years of data, between 2009 and 2015, divided by season in order to construct a standardized scale. The results show there is a delay of at least 15 min between the Vzp observation and the irregularity occurrence. Finally, we believe that this proposed index allows for evaluating the impacts of ionospheric phenomena in the space weather environment.


1979 ◽  
Vol 84 (A11) ◽  
pp. 6458 ◽  
Author(s):  
F. Primdahl ◽  
J.K. Walker ◽  
F. Spangslev ◽  
J.K. Olesen ◽  
U. Fahleson ◽  
...  

2008 ◽  
Vol 56 (6) ◽  
pp. 790-795 ◽  
Author(s):  
T.L. Zhang ◽  
M. Delva ◽  
W. Baumjohann ◽  
M. Volwerk ◽  
C.T. Russell ◽  
...  

2013 ◽  
Vol 303-306 ◽  
pp. 16-21
Author(s):  
Hao Miao Zhou ◽  
Qing Chen ◽  
Juan Hu Deng ◽  
Ying Xiao

To study the magnetic-electrical-mechanical coupling mechanism of microwave ME (magnetoelectric) tri-layered structures, we proposed a theoretical model of electric tunable FMR (Ferromagnetic Resonance) frequency shift for bias magnetic field in different directions through the theory of Smith-Beljers and free energy density of ferrite. A deformation produced by the applied electric field called strain could be obtained through the theory of classical laminated plate. This model effectively predicts the stress of laminated structure increases when the piezoelectric coefficient increases, the shift of electric field tunable FMR frequency is more obvious when saturation magnetization and magnetostriction coefficient of ferrite increase. Moreover, it qualitatively explains the experimental phenomena that the directions of FMR frequency shift are opposite when apply the in-plane and out-of-plane magnetic field respectively, and provides a theoretical basis for electric field and magnetic field dual tunable microwave devices.


2006 ◽  
Vol 24 (3) ◽  
pp. 915-940 ◽  
Author(s):  
A. V. Pavlov ◽  
S. Fukao ◽  
S. Kawamura

Abstract. We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU) radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997) or Scherliess and Fejer (1999)), in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from meridional neutral winds and variations in the zonal electric field to the equatorial anomaly changes is larger than that from geomagnetic storm disturbances in the neutral temperature and densities. Vibrationally excited N2 and O2 promote the equatorial anomaly enhancement during the predominant part of the studied time period, however, the role of vibrationally excited N2 and O2 in the development of the equatorial anomaly is not significant. The asymmetries in the neutral wind and densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2, and for the asymmetry between the values of the crest-to-trough ratios of the Northern and Southern Hemispheres. The model simulations provide evidence in favor of an asymmetry in longitude of the energy input into the auroral region of the Northern Hemisphere on 21 March 1990.


2013 ◽  
Vol 31 (6) ◽  
pp. 1035-1044 ◽  
Author(s):  
J. Park ◽  
H. Lühr

Abstract. In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP) in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI) during the same period. The correlation between the CHAMP (altitude ~ 400 km) estimates and ROCSAT-1 (altitude ~ 600 km) observations is reasonably high (R ≈ 0.8). The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo) is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field), thus determining the direction of the F region vertical current.


Sign in / Sign up

Export Citation Format

Share Document