equatorial station
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Felix Pereira ◽  
Jessy Sekere

Abstract An analysis of the perturbations in the electron content up to the ionospheric F2 layer peak and F2 layer peak height (hmF2) variations during earthquake time has been done using ionosonde data observed in the equatorial station Vanimo, Papua New Guinea. Two earth quakes occurred, one of magnitude 7.1 in Sissano in 1998 and the other of magnitude 6.7 in Aitape in 2002 in the western province of Papua New Guinea, have been studied. A decrease in electron content was observed in both the cases a few days prior to the earthquakes. An increase in height of hmF2 during night time was also observed during this period. This can be explained in terms of the lithosphere- atmosphere-ionosphere coupling prior to earthquake period.


2021 ◽  
Vol 3 (2) ◽  
pp. 11-15
Author(s):  
Ernest Benjamin Ikechukwu Ugwu ◽  
Christopher Ekene Okeke

The hourly variation of the H-component of the geometric field from two equatorial electrojet stations, Huancayo and Addis Ababa, and one non-equatorial electrojet station, Alibag, were studied to find out the trend of solar quiet variation of H for the year 2008. The dH amplitudes of the electrojet stations showed enhancement in H, while there was no enhancement in the non-electrojet station which was located far away from the dip equator. The day-to-day monthly diurnal variation was, however, observed in all the three stations. Also, at nighttime, the dH amplitudes of all the stations were non-zero which we attributed to non-ionospheric current sources like the magnetosphere since at night there was no solar radiations. For seasonal variations, an Equinoctial maximum, J-Solstitial maximum, and S-Solstitial maximum were observed in the equatorial stations while the non-equatorial station recorded an equinoctial minimum, J-solstitial minimum and D-Solstitial minimum.


2021 ◽  
Author(s):  
Chinmaya Nayak ◽  
Stephan Buchert ◽  
Bharati Kakad

<p>Equatorial plasma bubbles (EPBs) are generally caused due to the Rayleigh–Taylor instability. During the initial phase of the growth of the instability, the bubbles are associated with perturbation electric and magnetic fields. We call this the evolving (active) phase of the EPB. Over time, these electric field fluctuations decay in amplitude and the bubble, embedded in the neutral atmosphere, drifts eastward without much temporal evolution. We call this the non-evolving phase. Both phases can be distinguished in ground based VHF spaced receiver scintillation observations. In the evolving phase, the cross correlation between the signals from the two receivers is significantly less than one because of rapidly evolving perturbation electric fields. However, after some time (~2 hours) as the perturbation electric field decays, the cross correlation reaches almost 1 implying very slow temporal changes. This technique is applied to identify fresh generation of post-midnight plasma bubbles during magnetically disturbed conditions. From in situ satellite observations, the EPBs are generally identified as sudden depletion from background electron density, associated with magnetic fluctuations. In fact, the plasma bubble index produced from data of the ESA Swarm mission utilizes this same criteria of concurrent density depletions and magnetic fluctuations to identify the plasma bubbles. However, it is not so straightforward to distinguish evolving and non-evolving phases of the plasma bubbles in the SWARM plasma and magnetic observations. We look into near simultaneous in situ observations of SWARM and ground based VHF spaced receiver scintillation to identify a standard criteria for distinguishing evolving/non-evolving bubbles in SWARM observations. The results suggest that the presence/absence of magnetic fluctuations associated with the depletion in electron density can be used as a criteria for evolving/non-evolving bubbles. Ideally, the electric and magnetic field fluctuations should be present simultaneously and as a result should decay simultaneously. We have looked into one year (2014) of SWARM observations of EPBs and VHF spaced receiver scintillation data from Indian equatorial station Tirunelveli. A few case studies during both magnetically quiet and disturbed conditions are discussed.</p>


2020 ◽  
Vol 12 (20) ◽  
pp. 3406
Author(s):  
Oluwaseyi Jimoh ◽  
Jiuhou Lei ◽  
Fuqing Huang

This study focused on the investigation of daytime positive ionospheric disturbances and the recurrence of total electron content (TEC) enhancements. TEC data derived from the Beidou geostationary satellite over the Asian-Australian sector were used to study the occurrence of TEC enhancements during 2016–2018. The occurrence of TEC enhancements under quiet geomagnetic condition was analyzed. Furthermore, the occurrence of TEC enhancements during different geomagnetic storm phases was considered to address the question that relates to the recurrence of TEC enhancements during the recovery phase of geomagnetic storms. The seasonal variation of TEC enhancements displayed equinoctial and solstitial peaks at the middle and low latitudes respectively. Besides, there was no evident systematic latitudinal dependence in the occurrence of TEC enhancements, albeit at the equatorial station, nearly no TEC enhancement was observed under Kp < 3. Meanwhile, the occurrences during the main phases of the geomagnetic storms were significantly above the TEC enhancement baselines except at HKWS. The prominence of TEC enhancements during the main phase in comparison with the initial and recovery phases could be attributed to the effects of prompt penetration electric fields and equator-ward neutral winds. Moreover, the pattern of TEC enhancements during the storm recovery indicates the effects of chemical composition changes, winds, and the possible modulation from the lower atmospheric forcing.


2020 ◽  
Vol 38 (1) ◽  
pp. 35-49
Author(s):  
Graziela B. D. Silva ◽  
Antonio L. Padilha ◽  
Livia R. Alves

Abstract. In order to clarify the equatorial electrojet effects on ground magnetic pulsations in central South America, we statistically analyzed the amplitude structure of Pc3 and Pc5 pulsations recorded during days considered quiet to moderately disturbed at multiple equatorial stations nearly aligned along the 10∘ magnetic meridian. It was observed that Pc3 amplitudes are attenuated around noon at the dip equator for periods shorter than ∼35 s. It is proposed that daytime Pc3s are related to MHD (magnetohydrodynamic) compressional wave vertically incident on the ionosphere, with the screening effect induced by enhanced conductivity in the dip equator causing wave attenuation. Daytime Pc5s showed amplitude enhancement at all equatorial stations, which can be explained by the model of waves excited at higher latitudes and propagating equatorward in an Earth–ionosphere waveguide. However, a slight depression in Pc5 amplitude compared to neighboring equatorial stations and a phase lag in relation to an off-equatorial station were detected at the dip equator. This wave amplitude depression in the Pc5 frequency band cannot be explained by the ionospheric waveguide model alone, and we propose that an alternative propagation model that allows ULF (ultra-low-frequency) waves to penetrate directly from the magnetosphere to low latitudes could be operating simultaneously to produce these features at the dip equator. Significant effects of the sunrise terminator on Pc3 pulsations were also observed at the stations closest to the dip equator. Contrary to what is reported at other longitudes, in central South America the sunrise effect decreases the D∕H amplitude ratio. We suggest that these differences may arise from the unique characteristics of this sector, with a strong longitudinal variation in the magnetic declination and precipitation of energetic particles due to the presence of the South Atlantic Magnetic Anomaly (SAMA). The H-component amplification can be explained by enhancements of the zonal electric field near the magnetic equator driven by F-region neutral winds and waves in the fast-mode of propagation during sunrise.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Fabio Vargas ◽  
Christiano Brum ◽  
Pedrina Terra ◽  
Delano Gobbi

We present in this work a method for estimation of equatorial plasma bubble (EPB) mean zonal drift velocities using keograms generated from images of the OI 6300.0 nm nightglow emission collected from an equatorial station–Cariri (7.4° S, 36.5° W), and a mid-latitude station–Cachoeira Paulista (22.7° S, 45° W), both in the Brazilian sector. The mean zonal drift velocities were estimated for 239 events recorded from 2000 to 2003 in Cariri, and for 56 events recorded over Cachoeira Paulista from 1998 to 2000. It was found that EPB zonal drift velocities are smaller (≈60 ms−1) for events occurring later in the night compared to those occurring earlier (≈150 ms−1). The decreasing rate of the zonal drift velocity is ≈10 ms−1/h. We have also found that, in general, bubble events appearing first in the west-most region of the keograms are faster than those appearing first in the east-most region. Larger zonal drift velocities occur from 19 to 23 LT in a longitude range from −37° to −33°, which shows that the keogram method can be used to describe vertical gradients in the thermospheric wind, assuming that the EPBs drift eastward with the zonal wind. The method of velocity estimation using keograms compares favorably against the mosaic method developed by Arruda, D.C.S, 2005, but the standard deviation of the residuals for the zonal drift velocities from the two methods is not small (≈15 ms−1).


Author(s):  
Fabio Vargas ◽  
Christiano Brum ◽  
Pedrina Terra ◽  
Delano Gobbi

We present in this work a method for estimation of plasma bubble mean zonal drift velocities using keograms generated from images of the OI 6300.0 nm nightglow emission collected from an equatorial station -- Cariri (7.4$^\circ$S, 36.5$^\circ$W), and a mid-latitude station -- Cachoeira Paulista (22.7$^\circ$S, 45$^\circ$W), both in the Brazilian sector. The mean zonal drift velocities were estimated for 239 events recorded from 2000 to 2003 in Cariri, and for 56 events recorded over Cachoeira Paulista from 1998 to 2000. It was found that plasma bubble zonal drift velocities are smaller ($\sim$60 ms$^{-1}$) for events occurring later in the night compared to those occurring earlier ($\sim$150 ms$^{-1}$). The decreasing rate of the zonal drift velocity is of $\sim$10 ms$^{-1}$/h. We have also found that, in general, bubble events appearing first in the west-most region of the keogram are faster than those appearing first in the east-most region of the keograms. Larger zonal drift velocities occur from 19 LT to 23 LT in a longitude range from 37$^\circ$ to 33$^\circ$. The method of velocity estimation using keograms compares favorably against the mosaic method developed by \cite{Arruda:2005}, but the standard deviation of the residuals for the zonal drift velocities from the two methods is $\sim$15 ms$^{-1}$


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
S. G. Sumod ◽  
Tarun Kumar Pant

AbstractThe response of equatorial ionosphere–thermosphere system to the X3.8 solar flare of January 17, 2005 has been studied using the coordinated measurements of GPS-derived Total Electron Content (TEC), OI 630.0 nm dayglow and magnetic field measurements over a dip equatorial station Trivandrum (8.5° N, 77° E, dip 0.5° N), in India. It has been observed that Equatorial Electrojet (EEJ) as inferred using the ground-based magnetometers and GPS-derived TEC measurements show prompt enhancements during the peak flare, as expected. Interestingly, the temporal evolution of TEC at different latitudes revealed that the X3.8 class flare produced significant weakening of the plasma fountain and hence in the Equatorial Ionization Anomaly (EIA). Furthermore, the response of OI 630.0 nm dayglow during the flare is found to be strongly affected by the prevailing electrodynamics. The plausible physical mechanism for these effects is discussed in context of the current understanding of the neutral and electrodynamical coupling processes.


Sign in / Sign up

Export Citation Format

Share Document