scholarly journals Observations of day-to-day variability in precursor signatures to equatorial F-region plasma depletions

1999 ◽  
Vol 17 (8) ◽  
pp. 1053-1063 ◽  
Author(s):  
P. R. Fagundes ◽  
Y. Sahai ◽  
I. S. Batista ◽  
M. A. Abdu ◽  
J. A. Bittencourt ◽  
...  

Abstract. In December 1995, a campaign was carried out to study the day-to-day variability in precursor signatures to large-scale ionospheric F-region plasma irregularities, using optical diagnostic techniques, near the magnetic equator in the Brazilian sector. Three instruments were operated simultaneously: (a) an all-sky (180° field of view) imaging system for observing the OI 630 nm nightglow emission at Alcântara (2.5°S, 44.4°W); (b) a digisonde (256-Lowell) at São Luis (2.6°S, 44.2°W); and (c) a multi-channel tilting filter-type zenith photometer for observing the OI 630 nm and mesospheric nightglow emissions at Fortaleza (3.9°S, 38.4°W). During the period December 14-18, 1995 (summer in the southern hemisphere), a good sequence of the OI 630 nm imaging observations on five consecutive nights were obtained, which are presented and discussed in this study. The observing period was geomagnetically quiet to moderate  (Kp = 0+ to 5+; Dst = 18 nT to -37 nT). On four nights, out of the five observation nights, the OI 630 nm imaging pictures showed formations of transequatorial north-south aligned intensity depletions, which are the optical signatures of large-scale ionospheric F-region plasma bubbles. However, considerable day-to-day variability in the onset and development of the plasma depleted bands was observed. On one of the nights it appears that the rapid uplifting of the F-layer in the post-sunset period, in conjunction with gravity wave activity at mesospheric heights, resulted in generation of very strong plasma bubble irregularities. One of the nights showed an unusual formation of north-south depleted band in the western sector of the imaging system field of view, but the structure did not show any eastward movement, which is a normal characteristic of plasma bubbles. This type of irregularity structure, which probably can be observed only by wide-angle imaging system, needs more investigations for a better understanding of its behaviour.Key words. Atmospheric composition and structure (airglow and aurora) · Ionosphere (equatorial ionosphere; ionospheric irregularities)

2003 ◽  
Vol 21 (12) ◽  
pp. 2315-2322 ◽  
Author(s):  
A. A. Pimenta ◽  
P. R. Fagundes ◽  
Y. Sahai ◽  
J. A. Bittencourt ◽  
J. R. Abalde

Abstract. The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation), and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles). The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions) seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude), Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S) region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991) to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques)


Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2004 ◽  
Vol 22 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Y. Sahai ◽  
P. R. Fagundes ◽  
J. R. Abalde ◽  
A. A. Pimenta ◽  
J. A. Bittencourt ◽  
...  

Abstract. All-sky imaging observations of the F-region OI 630nm nightglow emission allow us to visualize large-scale equatorial plasma depletions, generally known as trans-equatorial plasma bubbles. Strong range type spread-F is the radio signature of these (magnetically) north-south aligned plasma depletions. An extensive database of the OI 630nm emission all-sky imaging observations has been obtained at Cachoeira Paulista (22.7°S, 45.0°W; dip latitude ∼16°S), Brazil, between the years 1987 and 2000. An analysis of these observations revealed that relatively few large-scale ionospheric plasma depletions occur during the months of May to August (southern winter, June solstice) in the Brazilian sector. Of the few that are observed during these months, some occur in association with geomagnetic storms and some do not. In this paper, a detailed analysis of the events when large-scale ionospheric plasma depletions were initiated and evolved during the June solstice periods are presented and discussed.Key words. Atmospheric composition and chemistry (airglow and aurora). Ionosphere (equatorial ionosphere; ionospheric irregularities)


1995 ◽  
Vol 16 (5) ◽  
pp. 117-120 ◽  
Author(s):  
P.R Fagundes ◽  
Y Sahai ◽  
J.A Bittencourt ◽  
H Takahashi

2015 ◽  
Vol 20 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Narayan P. Chapagain

The coincident observations of nighttime thermospheric zonal neutral winds and equatorial plasma bubble (EPB) drift velocities over Brazil during the October–December,2009 and 2010 are used to examine the coupling relationship between the thermosphere and ionosphere. The EPB zonal drift velocities are estimated using the airglow images recorded by optical imaging system, while the neutral winds are measured by using a bi-static Fabry–Perot interferometer (FPI) experiment deployed at two stations from Brazil. The results reveal the similar pattern in the EPB drift velocities and zonal neutral winds motion during the nighttime and night-to-night thereby illustrating a fully developed F-region dynamo. However, background natural winds also exceed EPBs velocities especially during the development phase of EPBs illustrating that F-region dynamo is not fully activated.Journal of Institute of Science and Technology, 2015, 20(2): 84-89  


2015 ◽  
Vol 20 (1) ◽  
pp. 20-27
Author(s):  
Narayan P. Chapagain

Deep plasma depletions during the nighttime period in the equatorial ionosphere (referred to as equatorial plasma bubbles –EPBs) can significantly affect communications and navigation systems. In this study, we present the image measurements of plasma bubble from Christmas Island (2.1°N, 157.4°W, dip latitude 2.8°N) in the central Pacific Ocean. These observations were made during September-October 1995 using a Utah State University (USU) CCD imaging system measured at ~280 km altitude. Well-defined magnetic field-aligned plasma depletions were observed for 18 nights, including strong post-midnight fossilized structures, enabling detailed measurements of their morphology and dynamics. We also estimate zonal velocity of the plasma bubbles from available images. The zonal drift velocity of the EPBs is a very important parameter for the understanding and modeling of the electrodynamics of the equatorial ionosphere and for the predictions of ionospheric irregularities. The eastward zonal drift velocities were around 90-100 m/s prior to local midnight, and decreases during the post-midnight period that persisted until dawn.Journal of Institute of Science and Technology, 2015, 20(1): 20-27


1999 ◽  
Vol 24 (11) ◽  
pp. 1477-1480 ◽  
Author(s):  
Y. Sahai ◽  
P.R. Fagundes ◽  
J.A. Bittencourt

2016 ◽  
Vol 59 (2) ◽  
Author(s):  
Parashram T. Patil ◽  
Rupesh N. Ghodpage ◽  
Alok K. Taori ◽  
Rohit P. Patil ◽  
Subramanian Gurubaran ◽  
...  

<p>Over 53 nights of all sky airglow imager data collected during January-April 2012 from the low latitude station Kolhapur (16.68°N, 74.26°E; 10.6°N dip latitude) have been analyzed to study the F-region dynamics through the imaging of OI 630 nm emission line. The observed night airglow data were supported by the ionosonde measurements from Tirunelveli (8.7°N, 77.8°E; 0.51°N dip latitude). Well defined magnetic field aligned depletions were observed during the observation period. Out of 53 nights, 40 nights exhibited the occurrence of north-south aligned equatorial plasma bubbles. These plasma bubbles were found moving towards east with drift speed in range between 70 to 200 m s<span><sup>-1</sup></span>. We have analyzed the zonal drift velocity variation and relation of bubble occurrence with the base height of the ionosphere together with the effects of the geomagnetic Ap and solar flux F<span><sub>10.7</sub></span> cm index in its first appearance.</p>


Sign in / Sign up

Export Citation Format

Share Document