scholarly journals The transpedicular approach for the study of intervertebral disc regeneration strategies: in vivo characterization

2013 ◽  
Vol 22 (S6) ◽  
pp. 972-978 ◽  
Author(s):  
Gianluca Vadalà ◽  
Francesca De Strobel ◽  
Marco Bernardini ◽  
Luca Denaro ◽  
Domenico D’Avella ◽  
...  
Spine ◽  
2013 ◽  
Vol 38 (6) ◽  
pp. E319-E324 ◽  
Author(s):  
Gianluca Vadalà ◽  
Fabrizio Russo ◽  
Girish Pattappa ◽  
Damiano Schiuma ◽  
Marianna Peroglio ◽  
...  

2015 ◽  
Vol 21 (11) ◽  
pp. 1117-1124 ◽  
Author(s):  
Gianluca Vadalà ◽  
Fabrizio Russo ◽  
Girish Pattappa ◽  
Marianna Peroglio ◽  
Vincent A. Stadelmann ◽  
...  

2021 ◽  
Vol 41 ◽  
pp. 153-169
Author(s):  
J Gansau ◽  
◽  
CT Buckley

Disc disease is characterised by degeneration of the nucleus pulposus (NP), the central gelatinous tissue of the intervertebral disc (IVD). As degeneration progresses, the microenvironment of the IVD becomes more hostile (i.e. decrease in oxygen, glucose and pH), providing a significant challenge for regeneration using cell-based therapies. Tissue engineering strategies such as priming cells or micro tissues with growth factors prior to implantation may overcome some of these issues by providing a pre-formed protective niche composed of extracellular matrix. The present study investigated the effect of priming on bone-marrow-derived stem cells (BMSCs) and articular chondrocytes (ACs) using transforming growth factor β3 (TGF-β3), cultured at different pH levels (pH 7.1, 6.8 and 6.5) representative of the in vivo disc microenvironment. Low pH was found to have a detrimental effect on both cell viability and matrix accumulation, which could be mitigated by priming cells using TGF-β3. Investigating the activation of the transmembrane acid-sensing ion channels (ASIC-1 and -3) showed an increased expression of ASIC-1 in BMSCs and ASIC-3 in ACs at lower pH levels post-priming. Metabolic activity in terms of lactic acid production was also found to be affected significantly by priming, whereas oxygen and glucose consumptions did not change considerably. Overall, the study demonstrated that cells could be equipped to sustain the harsh environment of the IVD and promote accumulation of NP-like matrix through priming. Such an approach may open new avenues to engineer tissues capable of sustaining challenging microenvironments such as those found in the IVD.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Ching Tzaan ◽  
Hsien-Chih Chen

Intervertebral disc (IVD) degeneration is a multifactorial process that is influenced by contributions from genetic predisposition, the aging phenomenon, lifestyle conditions, biomechanical loading and activities, and other health factors (such as diabetes). Attempts to decelerate disc degeneration using various techniques have been reported. However, to date, there has been no proven technique effective for broad clinical application. Granulocyte colony-stimulating factor (GCSF) is a growth factor cytokine that has been shown to enhance the availability of circulating hematopoietic stem cells to the brain and heart as well as their capacity for mobilization of mesenchymal bone marrow stem cells. GCSF also exerts significant increases in circulating neutrophils as well as potent anti-inflammatory effects. In our study, we hypothesize that GCSF can induce bone marrow stem cells differentiation and mobilization to regenerate the degenerated IVD. We found that GCSF had no contribution in disc regeneration or maintenance; however, there were cell proliferation within end plates. The effects of GCSF treatment on end plates might deserve further investigation.


BIOCELL ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 893-898
Author(s):  
PETRA KRAUS ◽  
ANKITA SAMANTA ◽  
SINA LUFKIN ◽  
THOMAS LUFKIN

2020 ◽  
Vol 10 (24) ◽  
pp. 9009
Author(s):  
Chiara Borrelli ◽  
Conor T. Buckley

The intervertebral disc (IVD) relies mainly on diffusion through the cartilaginous endplates (CEP) to regulate the nutrient and metabolites exchange, thus creating a challenging microenvironment. Degeneration of the IVD is associated with intradiscal acidification and elevated levels of pro-inflammatory cytokines. However, the synergistic impact of these microenvironmental factors for cell-based therapies remains to be elucidated. The aim of this study was to investigate the effects of low pH and physiological levels of interleukin-1ß (IL-1β) and tumour necrosis factor-α (TNF-α) on nasal chondrocytes (NCs) and subsequently compare their matrix forming capacity to nucleus pulposus (NP) cells in acidic and inflamed culture conditions. NCs and NP cells were cultured in low glucose and low oxygen at different pH conditions (pH 7.1, 6.8 and 6.5) and supplemented with physiological levels of IL-1β and TNF-α. Results showed that acidosis played a pivotal role in influencing cell viability and matrix accumulation, while inflammatory cytokine supplementation had a minor impact. This study demonstrates that intradiscal pH is a dominant factor in determining cell viability and subsequent cell function when compared to physiologically relevant inflammatory conditions. Moreover, we found that NCs allowed for improved cell viability and more effective NP-like matrix synthesis compared to NP cells, and therefore may represent an alternative and appropriate cell choice for disc regeneration.


Sign in / Sign up

Export Citation Format

Share Document