3D-printed drill guide template, a promising tool to improve pedicle screw placement accuracy in spinal deformity surgery: A systematic review and meta-analysis

Author(s):  
Weishi Liang ◽  
Bo Han ◽  
Junrui Jonathan Hai ◽  
Yong Hai ◽  
Long Chen ◽  
...  
Author(s):  
J. Cool ◽  
J. van Schuppen ◽  
M. A. de Boer ◽  
B. J. van Royen

Abstract Purpose In order to avoid pedicle screw misplacement in posterior spinal deformity surgery, patient specific 3D‑printed guides can be used. An accuracy assessment of pedicle screw insertion can be obtained by superimposing CT-scan images from a preoperative plan over those of the postoperative result. The aim of this study is to report on the accuracy of drill guide assisted pedicle screw placement in thoracolumbar spinal deformity surgery by means of a superimpose CT-analysis. Methods Concomitant with the clinical introduction of a new technique for drill guide assisted pedicle screw placement, the accuracy of pedicle screw insertion was analyzed in the first patients treated with this technique by using superimpose CT-analysis. Deviation from the planned ideal intrapedicular screw trajectory was classified according to the Gertzbein scale. Results Superimpose CT-analysis of 99 pedicle screws in 5 patients was performed. The mean linear deviation was 0.92 mm, the mean angular deviation was 2.92° with respect to the preoperatively planned pedicle screw trajectories. According to the Gertzbein scale, 100% of screws were found to be positioned within the “safe zone”. Conclusion The evaluated patient specific 3D-printed guide technology was demonstrated to constitute a safe and accurate tool for precise pedicle screw insertion in spinal deformity surgeries. Superimpose CT-analysis showed a 100% accuracy of pedicle screw placement without any violation of the pedicle wall or other relevant structures. We recommend a superimpose CT-analysis for the first consecutive patients when introducing new technologies into daily clinical practice, such as intraoperative imaging, navigation or robotics.


Author(s):  
Chengqiang Yu ◽  
Yufu Ou ◽  
Chengxin Xie ◽  
Yu Zhang ◽  
Jianxun Wei ◽  
...  

Abstract Background Many surgeons believe that the use of a 3D-printed drill guide template shortens operative time and reduces intraoperative blood loss compared with those of the free-hand technique. In this study, we investigated the effects of a drill guide template on the accuracy of pedicle screw placement (the screw placed completely in the pedicle), operative time, and intraoperative blood loss. Materials/Methods We systematically searched the major databases, such as Medline via PubMed, EMBASE, Ovid, Cochrane Library, and Google Scholar, regarding the accuracy of pedicle screw placement, operative time, and intraoperative blood loss. The χ2 test and I2 statistic were used to examine heterogeneity. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the accuracy rate of pedicle screw placement, and weighted mean differences (WMDs) with 95% CIs were utilized to express operative time and intraoperative blood loss. Results This meta-analysis included 13 studies (seven randomized controlled trials and six prospective cohort studies) involving 446 patients and 3375 screws. The risk of research bias was considered moderate. Operative time (WMD = − 20.75, 95% CI − 33.20 ~ − 8.29, P = 0.001) and intraoperative blood loss (WMD = − 106.16, 95% CI − 185.35 ~ − 26.97, P = 0.009) in the thoracolumbar vertebrae, evaluated by a subgroup analysis, were significantly different between groups. The 3D-printed drill guide template has advantages over the free-hand technique and improves the accuracy of pedicle screw placement (OR = 2.88; 95% CI, 2.39~3.47; P = 0.000). Conclusion The 3D-printed drill guide template can improve the accuracy rate of pedicle screw placement, shorten operative time, and reduce intraoperative blood loss.


2015 ◽  
Vol 24 (5) ◽  
pp. 990-1004 ◽  
Author(s):  
Ahmed A. Aoude ◽  
Maryse Fortin ◽  
Rainer Figueiredo ◽  
Peter Jarzem ◽  
Jean Ouellet ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
pp. 319-327 ◽  
Author(s):  
Lee A. Tan ◽  
Ketan Yerneni ◽  
Alexander Tuchman ◽  
Xudong J. Li ◽  
Meghan Cerpa ◽  
...  

Drugs ◽  
2019 ◽  
Vol 79 (15) ◽  
pp. 1679-1688 ◽  
Author(s):  
Dhwani Hariharan ◽  
Marco Mammi ◽  
Kelicia Daniels ◽  
Nayan Lamba ◽  
Kerilyn Petrucci ◽  
...  

2021 ◽  
pp. 155633162110278
Author(s):  
Kyle W. Morse ◽  
Hila Otremski ◽  
Kira Page ◽  
Roger F. Widmann

Introduction: Pediatric spinal deformity involves a complex 3-dimensional (3D) deformity that increases the risk of pedicle screw placement due to the close proximity of neurovascular structures. To increase screw accuracy, improve patient safety, and minimize surgical complications, the placement of pedicle screws is evolving from freehand techniques to computer-assisted navigation and to the introduction of robotic-assisted placement. Purpose: The aim of this review was to review the current literature on the use of robotic navigation in pediatric spinal deformity surgery to provide both an error analysis of these techniques and to provide recommendations to ensure its safe application. Methods: A narrative review was conducted in April 2021 using the MEDLINE (PubMed) database. Studies were included if they were peer-reviewed retrospective or prospective studies, included pediatric patients, included a primary diagnosis of pediatric spine deformity, utilized robotic-assisted spinal surgery techniques, and reported thoracic or lumbar pedicle screw breach rates or pedicle screw malpositioning. Results: In the few studies published on the use of robotic techniques in pediatric spinal deformity surgery, several found associations between the technology and increased rates of screw placement accuracy, reduced rates of breach, and minimal complications. All were retrospective studies. Conclusions: Current literature is of a low level of evidence; nonetheless, the findings suggest the accuracy and safety of robotic-assisted spinal surgery in pediatric pedicle screw placement. The introduction of robotics may drive further advances in less invasive pediatric spinal deformity surgery. Further study is warranted.


Sign in / Sign up

Export Citation Format

Share Document