Fracture Frequency and Block Volume Distribution in Rock Masses

2020 ◽  
Vol 53 (10) ◽  
pp. 4673-4689
Author(s):  
Maria Stavropoulou ◽  
George Xiroudakis
1996 ◽  
Vol 16 (02) ◽  
pp. 151-163 ◽  
Author(s):  
W. Schneider ◽  
A. Wehmeier

SummaryMegakaryocytes are part of clonal hematopoiesis in chronic myeloproliferative disorders and are responsible for most of the clinical complications in this disease. About 30-40% of patients with polycythemia vera (PV) and essential thrombocythemia (ET) suffer from thrombotic complications, and microcirculatory disorders are common. Spontaneous bleeding mainly from the gastrointestinal tract is another complication that is especially prevalent in myelofibrosis and advanced stages of chronic myeloid leukemia.In vivo, the bone marrow is hypercellular and the concentration of megakaryocytes increased with characteristic morphological abnormalities. Megakaryocytes are enlarged and ploidy is increased in PV and ET but small mononuclear cells with decreased ploidy are a feature of CML. Despite spontaneous growth in cul-ture, megakaryocytes in chronic MPD are hypersensitive to added interleukin-3, interleukin-6 and GM-CSF.Platelets released from these megakaryocytes show abnormal morphology and ultrastructure, reflected in loss of storage granules and organelles, increased volume distribution and low buoyant density. Uptake, storage and secretion of platelet dense granule constituents is abnormal, and the plasma levels of platelet specific proteins which may also include growth factors for fibroblasts are elevated. At high platelet counts, spontaneous aggregation is observed, whereas agonist-induced aggregation in vitro with adrenaline, ADP and collagen is often defective. Platelet thromboxane generation may be stimulated, and production along the lipoxygenase pathway is decreased. Abnormalities of glycoprotein receptors and decreased fibrinogen binding have been reported but their clinical significance is uncertain. Several observations suggest that not only receptor defects but ineffective intracellular signalling may be responsible for platelet function abnormalities.No single underlying defect has been discovered that could explain this variety of pathological findings. Moreover, a combination of intrinsic megakaryocyte abnormalities and increased susceptibility of platelets to activation makes it difficult to differentiate secondary phenomena from effects of clonal hematopoiesis. How-ever, there are some clinical guidelines for therapy.Most elderly patients will be treated with cytoreductive therapy. Alkylating drugs and 32P have been shown to be leukemogenic, but even hydroxyurea may have a 10% incidence of leukemia induction after long-term therapy. Therapy with platelet-inhibitory drugs is often not sufficient to control thrombosis, and may aggravate a bleeding tendency, so that younger patients with PV and ET are increasingly treated with anagrelide or interferon alpha (A-IFN). Anagrelide is a quinazolin derivative that specifically inhibits megakaryocytopoiesis, while A-IFN may suppress clonal hematopoiesis by an unknown mechanism.


ABOUTOPEN ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 21-23
Author(s):  
Raffaele Di Fenza ◽  
Hedwige Gay ◽  
Martina Favarato ◽  
Isabella Fontana ◽  
Roberto Fumagalli

In severe acute respiratory distress syndrome (ARDS), characterized by the ratio of arterial partial pressure of oxygen over fraction of inspired oxygen (P/F) less than 150 mm Hg, pronation cycles are the only intervention that showed improved survival, in combination with protective ventilation. The physiological advantages of performing pronation cycles, such as the improvement of oxygenation, better tidal volume distribution with increased involvement of dorsal regions, and easier drainage of secretions, overcome the possible complications, that is, endotracheal tube occlusion or misplacement, pressure ulcers, and brachial plexus injury. However, the incidence of complications is dramatically lower in intensive care units with expertise, adopting prone positioning in daily practice. In this video we are proposing step by step an easy and ergonomic technique to perform pronation maneuvers in patients with severe ARDS. Recent literature suggests that a high percentage of these patients are treated without undergoing pronation cycles. The main purpose of this video is to help increase the number of intensive care units worldwide commonly performing pronation cycles in patients that have indications to be pronated, in order to decrease healthcare burden and costs directly caused by ARDS. Proper intensive care unit staff training is fundamental in minimizing the risks associated with the maneuver for both patients and operators; and diffusion of a safe technique encouraging the operators is the second main purpose of this video.


2021 ◽  
Vol 13 (5) ◽  
pp. 957
Author(s):  
Guglielmo Grechi ◽  
Matteo Fiorucci ◽  
Gian Marco Marmoni ◽  
Salvatore Martino

The study of strain effects in thermally-forced rock masses has gathered growing interest from engineering geology researchers in the last decade. In this framework, digital photogrammetry and infrared thermography have become two of the most exploited remote surveying techniques in engineering geology applications because they can provide useful information concerning geomechanical and thermal conditions of these complex natural systems where the mechanical role of joints cannot be neglected. In this paper, a methodology is proposed for generating point clouds of rock masses prone to failure, combining the high geometric accuracy of RGB optical images and the thermal information derived by infrared thermography surveys. Multiple 3D thermal point clouds and a high-resolution RGB point cloud were separately generated and co-registered by acquiring thermograms at different times of the day and in different seasons using commercial software for Structure from Motion and point cloud analysis. Temperature attributes of thermal point clouds were merged with the reference high-resolution optical point cloud to obtain a composite 3D model storing accurate geometric information and multitemporal surface temperature distributions. The quality of merged point clouds was evaluated by comparing temperature distributions derived by 2D thermograms and 3D thermal models, with a view to estimating their accuracy in describing surface thermal fields. Moreover, a preliminary attempt was made to test the feasibility of this approach in investigating the thermal behavior of complex natural systems such as jointed rock masses by analyzing the spatial distribution and temporal evolution of surface temperature ranges under different climatic conditions. The obtained results show that despite the low resolution of the IR sensor, the geometric accuracy and the correspondence between 2D and 3D temperature measurements are high enough to consider 3D thermal point clouds suitable to describe surface temperature distributions and adequate for monitoring purposes of jointed rock mass.


Sign in / Sign up

Export Citation Format

Share Document