scholarly journals A Modified Phase-Field Fracture Model for Simulation of Mixed Mode Brittle Fractures and Compressive Cracks in Porous Rock

Author(s):  
Alex Spetz ◽  
Ralf Denzer ◽  
Erika Tudisco ◽  
Ola Dahlblom

AbstractIn this work, we propose a modified phase-field model for simulating the evolution of mixed mode fractures and compressive driven fractures in porous artificial rocks. For the purpose of validation, the behaviour of artificial rock samples, with either a single or double saw cuts, under uniaxial plane strain compression has been numerically simulated. The simulated results are compared to experimental data, both qualitatively and quantitatively. It is shown that the proposed model is able to capture the commonly observed propagation pattern of wing cracks emergence followed by secondary cracks driven by compressive stresses. Additionally, the typical types of complex crack patterns observed in experimental tests are successfully reproduced, as well as the critical loads.

2020 ◽  
Vol 224 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Alex Spetz ◽  
Ralf Denzer ◽  
Erika Tudisco ◽  
Ola Dahlblom

AbstractIn this work, we suggest a modified phase-field model for simulating the evolution of mixed mode fractures and compressive driven fractures in porous artificial rocks and Neapolitan Fine Grained Tuff. The numerical model has been calibrated using experimental observations of rock samples with a single saw cut under uniaxial plane strain compression. For the purpose of validation, results from the numerical model are compared to Meuwissen samples with different angles of rock bridge inclination subjected to uni-axial compression. The simulated results are compared to experimental data, both qualitatively and quantitatively. It is shown that the proposed model is able to capture the emergence of shear cracks between the notches observed in the Neapolitan Fine Grained Tuff samples as well as the propagation pattern of cracks driven by compressive stresses observed in the artificial rock samples. Additionally, the typical types of complex crack patterns observed in experimental tests are successfully reproduced, as well as the critical loads.


2013 ◽  
Vol 15 (1) ◽  
pp. 167-181 ◽  
Author(s):  
Yue Hou ◽  
Pengtao Yue ◽  
Qiang Xin ◽  
Troy Pauli ◽  
Wenjuan Sun ◽  
...  

2020 ◽  
Author(s):  
Javad Mehrmashhadi ◽  
Mohammadreza Bahadori ◽  
Florin Bobaru

We report computational results obtained with three different models for dynamic brittle fracture. The results are compared against recent experimental tests on dynamic fracture/crack branching in glass induced by impact. Two peridynamic models (one using the meshfree discretization, the other being the LS-DYNA’s discontinuous-Galerkin implementation) and a phase-field model lead to interesting and important differences in terms of reproducing the experimentally observed fracture behavior and crack paths. We monitor the crack branching location, the angle of crack branching, the crack propagation speed, and some particular features seen in the experimental crack paths: small twists/kinks near the far edge of the sample. We discuss the models’ performance and provide possible reasons behind the failure of some of the models to correctly predict the observed behavior.


2020 ◽  
Vol 252 ◽  
pp. 112635 ◽  
Author(s):  
Udit Pillai ◽  
Savvas P. Triantafyllou ◽  
Yasser Essa ◽  
Federico Martin de la Escalera

2016 ◽  
Vol 713 ◽  
pp. 38-41 ◽  
Author(s):  
Rainer Falkenberg

Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective ofthis investigation and realised within the theory of gradient-extended dissipative continua with length-scales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based onthe introduction of a crack phase-field to maintain the evolution of complex crack topologies. Withina thermodynamical framework allowing for mechanical and mass transport processes the crack phase-field is capable to model crack initiation and propagation bythe finite element method. As complexcrack situations such as crack initiation, curvilinear crack patterns and crack branching are usuallyhard to realise with sharp crack models, they can be assessedwithout the requirement of a predefinedcrack path within this method. The numerical modeling of a showcase demonstrates a crack initiationas well as a crack propagation situation with respect to the determination of stress-intensity factors; acrack deviation situation with a curvilinear crack path is modeled by the introduction of a geometricalperturbation and a locally enhanced species concentration


Author(s):  
Hongjun Yu ◽  
Liulei Hao ◽  
Rilin Shen ◽  
Licheng Guo ◽  
Zhen Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document