Solid phase extraction of chromium(VI) using Aliquat336 immobilized on a thin film of multiwall carbon nanotubes

2012 ◽  
Vol 179 (3-4) ◽  
pp. 235-239 ◽  
Author(s):  
Pedro R. Aranda ◽  
Ernesto Perino ◽  
Franco A. Bertolino ◽  
Julio Raba ◽  
Irma E. De Vito
2021 ◽  
Vol 4 (02) ◽  
pp. 72-85
Author(s):  
Arezou Lari ◽  
Nafiseh Esmaeili ◽  
Homanaz Ghafari

In this study, a novel synthesis adsorbent, 1-(3-aminopropyl)-3-methylimidazolium hexafluorophosphate functionlized on multiwall carbon nanotubes ([Apmim][PF6]-MWCNTs, IL@MWCNTS) was used for nickel/lead (Ni/Pb) extraction and determination by dispersive ionic liquid micro solid-phase extraction (DIL-μ-SPE) coupled to electrothermal atomic absorption spectrometry (ET-AAS). After dilution of 20 mg of IL@MWCNTS in 200 μL of acetone, the mixture was injected to 10 mL of human serum/urine samples at pH of 8.0. After sonication for 5 min, the Ni(II) / Pb(II) were extracted by ionic liquid phase and then centrifuged for 2.5 min. The upper liquid phase set aside and Ni(II) / Pb(II) loaded in adsorbent were back-extracted by acidic solution at pH=2-3. Finally, the concentration of total nickel and lead was determined by ET-AAS. By optimizing, the limit of detection, linear range, and enrichment factor for nickel and lead were obtained (0.05 μg L−1; 0.1 μg L−1), (0.2-5.8 μg L−1; 0.4-30 μg L−1) and 24.7; 5.1, respectively (RSD less than 5%). Also, the capacity absorption of IL@MWCNTS for nickel and lead ions were achieved 149.3 mg g-1 and 162.5 mg g-1, respectively.  The DIL-μ-SPE procedure was validated for nickel and lead extraction by spiking of real samples and ICP-MS analyzer.


The Analyst ◽  
2015 ◽  
Vol 140 (10) ◽  
pp. 3474-3483 ◽  
Author(s):  
Jing Chen ◽  
Yuzhi Wang ◽  
Yanhua Huang ◽  
Kaijia Xu ◽  
Na Li ◽  
...  

A novel adsorbent based on silica-coated magnetic multiwall carbon nanotubes (MWCNTs) surface modified by dual hydroxy functional ionic liquid (FIL) ([OH]-FIL-m-MWCNTs@SiO2) has been designed and used for the purification of lysozyme (Lys) by magnetic solid-phase extraction (MSPE).


Talanta ◽  
2007 ◽  
Vol 71 (4) ◽  
pp. 1512-1519 ◽  
Author(s):  
Adriano Francisco Barbosa ◽  
Mariana Gava Segatelli ◽  
Arnaldo César Pereira ◽  
Antônio de Santana Santos ◽  
Lauro Tatsuo Kubota ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Majid Soleimani ◽  
Majid Ghahraman Afshar ◽  
Arman Sedghi

We describe here the amino-functionalization of multiwall carbon nanotubes (MWCNTs) and also its application as an adsorbent of solid phase extraction (SPE). The amino-functionalized MWCNTs have a good capacity to retain Hg2+, but the raw and purified MWCNTs are found not to adsorb Hg2+ ions. The amino-functionalized MWCNTs are prepared with amino-functionalization of purified MWCNTs by ethylenediamine. The physicochemical properties of purified and amino-functionalized MWCNTs are characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and the Boehm titration. The amino-functionalized MWCNTs are selected as novel sorbents for the solid phase extraction of Hg2+. The amino-functionalized MWCNT-SPE method is used for the determination of Hg2+ from complex matrix including fish and real water samples. Effective parameters on Hg2+ retention such as pH, flowrate, nature of the eluent, the ionic strength, selectivity coefficient, and retention capacity are investigated. The enrichment factor and maximum capacity of the sorbent are 100 mL and 11.58 mg/g, respectively. The linear range, limit of detection, and relative standard deviation of the proposed method are 0.003 to 0.3 μg/L, 1.25×10−3 μg/L, and 2.23%, respectively. Selectivity experiments show that the adsorbents have a stronger specific retention for Hg2+ than Fe3+, Cu2+, Pb2+, Ni2+, Mn2+, Ca2+, and Mg2+.


Talanta ◽  
2009 ◽  
Vol 79 (2) ◽  
pp. 249-253 ◽  
Author(s):  
Pablo H. Pacheco ◽  
Patricia Smichowski ◽  
Griselda Polla ◽  
Luis D. Martinez

2020 ◽  
Vol 16 (4) ◽  
pp. 381-392
Author(s):  
Ayman A. Gouda ◽  
Ali H. Amin ◽  
Ibrahim S. Ali ◽  
Zakia Al Malah

Background: Cadmium (Cd2+) and lead (Pb2+) have acute and chronic effects on humans and other living organisms. In the present work, new, green and accurate dispersive micro solid-phase extraction (DμSPE) method for the separation and preconcentration of trace amounts of cadmium (Cd2+) and lead (Pb2+) ions in various food, water and tobacco samples collected from Saudi Arabia prior to its Flame Atomic Absorption Spectrometric (FAAS) determinations was developed. Methods: The proposed method was based on a combination of oxidized multiwalled carbon nanotubes (O-MWCNTs) with a new chelating agent 5-benzyl-4-[4-methoxybenzylideneamino)-4H- 1,2,4-triazole-3-thiol (BMBATT) to enrich and separate trace levels of Cd2+ and Pb2+. The effect of separation parameters was investigated. The validation of the proposed preconcentration procedure was performed using certified reference materials. Results: Analyte recovery values ranged from 95-102%, indicating that the method is highly accurate. Furthermore, precision was demonstrated by the relative standard deviation (RSD < 3.0%). The limits of detection were 0.08 and 0.1 μg L−1 for Cd2+ and Pb2+ ions, respectively. The preconcentration factor was 200. Conclusion: The proposed method was used for the estimation of Cd2+ and Pb2+ ion content in various real samples, and satisfactory results were obtained. The proposed method has high adsorption capacity, rapid adsorption equilibrium, extremely low LODs, high preconcentration factors and shortens the time of sample preparation in comparison to classical SPE.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marta O. Barbosa ◽  
Rui S. Ribeiro ◽  
Ana R. L. Ribeiro ◽  
M. Fernando R. Pereira ◽  
Adrián M. T. Silva

AbstractPristine and functionalized multi-walled carbon nanotubes (MWCNTs) were investigated as adsorbent materials inside solid-phase extraction (SPE) cartridges for extraction and preconcentration of 8 EU-relevant organic micropollutants (with different pKa and polarity) before chromatographic analysis of surface water. The recoveries obtained were > 60% for 5/8 target pollutants (acetamiprid, atrazine, carbamazepine, diclofenac, and isoproturon) using a low amount of this reusable adsorbent (50 mg) and an eco-friendly solvent (ethanol) for both conditioning and elution steps. The introduction of oxygenated surface groups in the carbon nanotubes by using a controlled HNO3 hydrothermal oxidation method, considerably improved the recoveries obtained for PFOS (perfluorooctanesulfonic acid) and methiocarb, which was ascribed to the hydrogen bond adsorption mechanism, but decreased those observed for the pesticide acetamiprid and for two pharmaceuticals (carbamazepine and diclofenac), suggesting π–π dispersive interactions. Moreover, a good correlation was found between the recovery obtained for methiocarb and the amount of oxygenated surface groups on functionalized MWCNTs, which was mainly attributed to the increase of phenols and carbonyl and quinone groups. Thus, the HNO3 hydrothermal oxidation method can be used to finely tune the surface chemistry (and texture) of MWCNTs according to the specific micropollutants to be extracted and quantified in real water samples.


Sign in / Sign up

Export Citation Format

Share Document