scholarly journals A geometric approach to divergent points of higher dimensional Collatz mappings

2016 ◽  
Vol 182 (4) ◽  
pp. 851-863
Author(s):  
Steffen Kionke
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Magdalena Larfors ◽  
Matthew Magill ◽  
Robin Schneider

Abstract Heterotic compactifications on Calabi-Yau threefolds frequently exhibit textures of vanishing Yukawa couplings in their low energy description. The vanishing of these couplings is often not enforced by any obvious symmetry and appears to be topological in nature. Recent results used differential geometric methods to explain the origin of some of this structure [1, 2]. A vanishing theorem was given which showed that the effect could be attributed, in part, to the embedding of the Calabi-Yau manifolds of interest inside higher dimensional ambient spaces, if the gauge bundles involved descended from vector bundles on those larger manifolds. In this paper, we utilize an algebro-geometric approach to provide an alternative derivation of some of these results, and are thus able to generalize them to a much wider arena than has been considered before. For example, we consider cases where the vector bundles of interest do not descend from bundles on the ambient space. In such a manner we are able to highlight the ubiquity with which textures of vanishing Yukawa couplings can be expected to arise in heterotic compactifications, with multiple different constraints arising from a plethora of different geometric features associated to the gauge bundle.


1992 ◽  
Vol 111 (2) ◽  
pp. 291-298 ◽  
Author(s):  
Washington Mio

One of the central problems in higher-dimensional knot theory is the classification of links up to concordance. In 14, Le Dimet constructed a universal model for (disk) link complements, which allowed him to formulate this problem in the framework of surgery theory by applying the Cappell-Shaneson program for studying codimension two embeddings of manifolds 1. The concordance classification was reduced to questions in L-theory (-groups 1) and homotopy theory (of Vogel local spaces 14). While recent results of Cochran and Orr2 (see also 18) provide rich information on the -theoretic part of the problem (in particular, they settle the question of the existence of links not concordant to boundary links), little is known about Le Dimet's homotopy invariant of links; for example, it is not known whether it may ever be non-trivial, or phrasing it more geometrically (according to 19), whether there are links that are not concordant to sublinks of homology boundary links. This motivated us to look at simpler classes of links, for which a more direct geometric approach to the problem is also possible, in an attempt to get some insight on the geometry carried by the homotopy invariants.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2020 ◽  
Vol 9 (10) ◽  
pp. 8545-8557
Author(s):  
K. P. Singh ◽  
T. A. Singh ◽  
M. Daimary
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document