Short-term wind speed predictions with machine learning techniques

2015 ◽  
Vol 128 (1) ◽  
pp. 57-72 ◽  
Author(s):  
M. A. Ghorbani ◽  
R. Khatibi ◽  
M. H. FazeliFard ◽  
L. Naghipour ◽  
O. Makarynskyy
2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2021 ◽  
pp. 249-263
Author(s):  
Arash Moradzadeh ◽  
Amin Mansour-Saatloo ◽  
Morteza Nazari-Heris ◽  
Behnam Mohammadi-Ivatloo ◽  
Somayeh Asadi

10.6036/10007 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 528-533
Author(s):  
XAVIER LARRIVA NOVO ◽  
MARIO VEGA BARBAS ◽  
VICTOR VILLAGRA ◽  
JULIO BERROCAL

Cybersecurity has stood out in recent years with the aim of protecting information systems. Different methods, techniques and tools have been used to make the most of the existing vulnerabilities in these systems. Therefore, it is essential to develop and improve new technologies, as well as intrusion detection systems that allow detecting possible threats. However, the use of these technologies requires highly qualified cybersecurity personnel to analyze the results and reduce the large number of false positives that these technologies presents in their results. Therefore, this generates the need to research and develop new high-performance cybersecurity systems that allow efficient analysis and resolution of these results. This research presents the application of machine learning techniques to classify real traffic, in order to identify possible attacks. The study has been carried out using machine learning tools applying deep learning algorithms such as multi-layer perceptron and long-short-term-memory. Additionally, this document presents a comparison between the results obtained by applying the aforementioned algorithms and algorithms that are not deep learning, such as: random forest and decision tree. Finally, the results obtained are presented, showing that the long-short-term-memory algorithm is the one that provides the best results in relation to precision and logarithmic loss.


2021 ◽  
Author(s):  
Milad Asgarimehr ◽  
Caroline Arnold ◽  
Felix Stiehler ◽  
Tobias Weigel ◽  
Chris Ruf ◽  
...  

<p>The Global Navigation Satellite System Reflectometry (GNSS-R) is a novel remote sensing technique exploiting GNSS signals after reflection off the Earth's surface. The capability of spaceborne GNSS-R to monitor ocean state and the surface wind is recently well demonstrated, which offers an unprecedented sampling rate and much robustness during rainfall. The Cyclone GNSS (CyGNSS) is the first spaceborne mission fully dedicated to GNSS-R, launched in December 2016.</p><p>Thanks to the low development costs of the GNSS-R satellite missions as well as the capability of tracking multiple reflected signals from numerous GNSS transmitters, the GNSS-R datasets are much bigger compared to those from conventional remote sensing techniques. The CyGNSS provides a high number of unique samples in the order of a few millions monthly.  Deep learning can therefore be implemented in GNSS-R even more efficiently than other remote sensing domains. With the upcoming GNSS-R CubeSats, the data volume is expected to increase in the near future and GNSS-R “Big data” can be a future challenge. Deep learning methods are additionally able to correct the potential effects, both technical and geophysical, dictated by data empirically when the mechanisms are not well described by the theoretical knowledge. This poses the question if GNSS-R should embrace deep learning and can benefit from this modern data scientific method like other Earth Observation domains.</p><p>The receivers onboard CyGNSS cross-correlate the reflected signals received at a nadir antenna to a locally generated replica. The cross-correlation power at a range of the signal delay and Doppler frequency shift is the observational output of the receivers being called delay-Doppler Maps (DDMs). The mapped power is inversely proportional to the ocean roughness and consequently surface winds.</p><p>Few recent studies innovatively show some merits of machine learning techniques for the derivations of ocean winds from the DDMs. However, the capability of machine learning techniques, especially deep learning for an operational data derivation needs to be better characterized. Normally, the operational retrieval algorithms are developed based on an existing dataset and are supposed to operate on the upcoming measurements. Therefore, machine learning-based models are supposed to generalize well on the unseen data in future periods. Herein, we aim at the characterization of deep learning capabilities for these GNSS-R operational purposes.</p><p>In this interdisciplinary study, we present a deep learning algorithm processing the CyGNSS measurements to derive wind speed data. The model is supposed to meet an acceptable level of generalization on the upcoming unseen data, and alternatively can be used as an operational processing algorithm. We propose a deep model based on convolutional and fully connected layers processing the DDMs besides ancillary input features. The model leads to the so-far best quality of global wind speed estimates using GNSS-R measurements with a general root mean square error of 1.3 m/s over unseen data in a time span different from that of the training data.</p>


Sign in / Sign up

Export Citation Format

Share Document