scholarly journals COMPARATIVE ANALYSIS AND EVALUATION OF THE APPLICATION OF DEEP LEARNING TECHNIQUES TO CYBERSECURITY DATASETS

10.6036/10007 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 528-533
Author(s):  
XAVIER LARRIVA NOVO ◽  
MARIO VEGA BARBAS ◽  
VICTOR VILLAGRA ◽  
JULIO BERROCAL

Cybersecurity has stood out in recent years with the aim of protecting information systems. Different methods, techniques and tools have been used to make the most of the existing vulnerabilities in these systems. Therefore, it is essential to develop and improve new technologies, as well as intrusion detection systems that allow detecting possible threats. However, the use of these technologies requires highly qualified cybersecurity personnel to analyze the results and reduce the large number of false positives that these technologies presents in their results. Therefore, this generates the need to research and develop new high-performance cybersecurity systems that allow efficient analysis and resolution of these results. This research presents the application of machine learning techniques to classify real traffic, in order to identify possible attacks. The study has been carried out using machine learning tools applying deep learning algorithms such as multi-layer perceptron and long-short-term-memory. Additionally, this document presents a comparison between the results obtained by applying the aforementioned algorithms and algorithms that are not deep learning, such as: random forest and decision tree. Finally, the results obtained are presented, showing that the long-short-term-memory algorithm is the one that provides the best results in relation to precision and logarithmic loss.

Teknika ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62-67
Author(s):  
Faisal Dharma Adhinata ◽  
Diovianto Putra Rakhmadani

The impact of this pandemic affects various sectors in Indonesia, especially in the economic sector, due to the large-scale social restrictions policy to suppress this case's growth. The details of the growth of Covid-19 in Indonesia are still fluctuating and cannot be fully understood. Recently it has been developed by researchers related to the prediction of Covid-19 cases in various countries. One of them is using a machine learning technique approach to predict cases of daily increase Covid-19. However, the use of machine learning techniques results in the MSE error value in the thousands. This high number indicates that the prediction data using the model is still a high error rate compared to the actual data. In this study, we propose a deep learning approach using the Long Short Term Memory (LSTM) method to build a prediction model for the daily increase cases of Covid-19. This study's LSTM model architecture uses the LSTM layer, Dropout layer, Dense, and Linear Activation Function. Based on various hyperparameter experiments, using the number of neurons 10, batch size 32, and epochs 50, the MSE values were 0.0308, RMSE 0.1758, and MAE 0.13. These results prove that the deep learning approach produces a smaller error value than machine learning techniques, even closer to zero.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2018 ◽  
Author(s):  
Andre Lamurias ◽  
Luka A. Clarke ◽  
Francisco M. Couto

AbstractRecent studies have proposed deep learning techniques, namely recurrent neural networks, to improve biomedical text mining tasks. However, these techniques rarely take advantage of existing domain-specific resources, such as ontologies. In Life and Health Sciences there is a vast and valuable set of such resources publicly available, which are continuously being updated. Biomedical ontologies are nowadays a mainstream approach to formalize existing knowledge about entities, such as genes, chemicals, phenotypes, and disorders. These resources contain supplementary information that may not be yet encoded in training data, particularly in domains with limited labeled data.We propose a new model, BO-LSTM, that takes advantage of domain-specific ontologies, by representing each entity as the sequence of its ancestors in the ontology. We implemented BO-LSTM as a recurrent neural network with long short-term memory units and using an open biomedical ontology, which in our case-study was Chemical Entities of Biological Interest (ChEBI). We assessed the performance of BO-LSTM on detecting and classifying drug-drug interactions in a publicly available corpus from an international challenge, composed of 792 drug descriptions and 233 scientific abstracts. By using the domain-specific ontology in addition to word embeddings and WordNet, BO-LSTM improved both the F1-score of the detection and classification of drug-drug interactions, particularly in a document set with a limited number of annotations. Our findings demonstrate that besides the high performance of current deep learning techniques, domain-specific ontologies can still be useful to mitigate the lack of labeled data.Author summaryA high quantity of biomedical information is only available in documents such as scientific articles and patents. Due to the rate at which new documents are produced, we need automatic methods to extract useful information from them. Text mining is a subfield of information retrieval which aims at extracting relevant information from text. Scientific literature is a challenge to text mining because of the complexity and specificity of the topics approached. In recent years, deep learning has obtained promising results in various text mining tasks by exploring large datasets. On the other hand, ontologies provide a detailed and sound representation of a domain and have been developed to diverse biomedical domains. We propose a model that combines deep learning algorithms with biomedical ontologies to identify relations between concepts in text. We demonstrate the potential of this model to extract drug-drug interactions from abstracts and drug descriptions. This model can be applied to other biomedical domains using an annotated corpus of documents and an ontology related to that domain to train a new classifier.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


2021 ◽  
Vol 4 (1) ◽  
pp. 121-128
Author(s):  
A Iorliam ◽  
S Agber ◽  
MP Dzungwe ◽  
DK Kwaghtyo ◽  
S Bum

Social media provides opportunities for individuals to anonymously communicate and express hateful feelings and opinions at the comfort of their rooms. This anonymity has become a shield for many individuals or groups who use social media to express deep hatred for other individuals or groups, tribes or race, religion, gender, as well as belief systems. In this study, a comparative analysis is performed using Long Short-Term Memory and Convolutional Neural Network deep learning techniques for Hate Speech classification. This analysis demonstrates that the Long Short-Term Memory classifier achieved an accuracy of 92.47%, while the Convolutional Neural Network classifier achieved an accuracy of 92.74%. These results showed that deep learning techniques can effectively classify hate speech from normal speech.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 10 (11) ◽  
pp. e33101119347
Author(s):  
Ewethon Dyego de Araujo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araujo Batista

Introdução: a dengue é uma arbovirose causada pelo vírus DENV e transmitida para o homem através do mosquito Aedes aegypti. Atualmente, não existe uma vacina eficaz para combater todas as sorologias do vírus. Diante disso, o combate à doença se volta para medidas preventivas contra a proliferação do mosquito. Os pesquisadores estão utilizando Machine Learning (ML) e Deep Learning (DL) como ferramentas para prever casos de dengue e ajudar os governantes nesse combate. Objetivo: identificar quais técnicas e abordagens de ML e de DL estão sendo utilizadas na previsão de dengue. Métodos: revisão sistemática realizada nas bases das áreas de Medicina e de Computação com intuito de responder as perguntas de pesquisa: é possível realizar previsões de casos de dengue através de técnicas de ML e de DL, quais técnicas são utilizadas, onde os estudos estão sendo realizados, como e quais dados estão sendo utilizados? Resultados: após realizar as buscas, aplicar os critérios de inclusão, exclusão e leitura aprofundada, 14 artigos foram aprovados. As técnicas Random Forest (RF), Support Vector Regression (SVR), e Long Short-Term Memory (LSTM) estão presentes em 85% dos trabalhos. Em relação aos dados, na maioria, foram utilizados 10 anos de dados históricos da doença e informações climáticas. Por fim, a técnica Root Mean Absolute Error (RMSE) foi a preferida para mensurar o erro. Conclusão: a revisão evidenciou a viabilidade da utilização de técnicas de ML e de DL para a previsão de casos de dengue, com baixa taxa de erro e validada através de técnicas estatísticas.


2021 ◽  
Vol 11 (1) ◽  
pp. 61-67
Author(s):  
Watthana Pongsena ◽  
◽  
Prakaidoy Sitsayabut ◽  
Nittaya Kerdprasop ◽  
Kittisak Kerdprasop ◽  
...  

Forex is the largest global financial market in the world. Traditionally, fundamental and technical analysis are strategies that the Forex traders often used. Nowadays, advanced computational technology, Artificial Intelligence (AI) has played a significant role in the financial domain. Various applications based on AI technologies particularly machine learning and deep learning have been constantly developed. As the historical data of the Forex are time-series data where the values from the past affect the values that will appear in the future. Several existing works from other domains of applications have proved that the Long-Short Term Memory (LSTM), which is a particular kind of deep learning that can be applied to modeling time series, provides better performance than traditional machine learning algorithms. In this paper, we aim to develop a powerful predictive model targeting to predicts the daily price changes of the currency pairwise in the Forex market using LSTM. Besides, we also conduct an extensive experiment with the intention to demonstrate the effect of various factors contributing to the performance of the model. The experimental results show that the optimized LSTM model accurately predicts the direction of the future price up to 61.25 percent.


2020 ◽  
Author(s):  
Anjir Ahmed Chowdhury ◽  
Khandaker Tabin Hasan ◽  
Khadija Kubra Shahjalal Hoque

Abstract Objectives: The dangerously contagious virus named \newline SARS-CoV-2 has hit the world hard that has locked downed billion people in their homes for stopping further spread. All the researchers and scientists in various fields are working around the clock to come up with a vaccine and prevention methods to save the world from this invisible pathogen. However, reliable prediction of the epidemic may help contain the contagion until cure becomes available. The machine learning techniques is one of the frontier in predicting the future trend and behavior of this outbreak. Our research is focused on finding a suitable machine learning model that can predict on small dataset with higher accuracy.Methods: In this research, we have used the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the long short-term memory[LSTM] to foresee the newly infected cases in Bangladesh. We have compared both the results of the experiments and it can be forenamed that LSTM has shown more satisfactory results.Results: Upon study and testing on several models, we have showed that LSTM works better on scenario based model for Bangladesh with MAPE 4.51, RMSE 6.55 and Correlation Coefficient 0.75. Conclusion: This study is expected to shade light on Covid-19 prediction models for researchers working with machine learning techniques and help avoid proven failures specially for small imprecise dataset.


Sign in / Sign up

Export Citation Format

Share Document