Evaluation of rain and cloud microphysical properties of monsoon depressions at a hyperlocal scale from simulations and observations

Author(s):  
Anshul Sisodiya ◽  
Sandeep Pattnaik
2015 ◽  
Vol 8 (3) ◽  
pp. 1593-1604 ◽  
Author(s):  
C. Bassani ◽  
C. Manzo ◽  
F. Braga ◽  
M. Bresciani ◽  
C. Giardino ◽  
...  

Abstract. Hyperspectral imaging provides quantitative remote sensing of ocean colour by the high spectral resolution of the water features. The HICO™ (Hyperspectral Imager for the Coastal Ocean) is suitable for coastal studies and monitoring. The accurate retrieval of hyperspectral water-leaving reflectance from HICO™ data is still a challenge. The aim of this work is to retrieve the water-leaving reflectance from HICO™ data with a physically based algorithm, using the local microphysical properties of the aerosol in order to overcome the limitations of the standard aerosol types commonly used in atmospheric correction processing. The water-leaving reflectance was obtained using the HICO@CRI (HICO ATmospherically Corrected Reflectance Imagery) atmospheric correction algorithm by adapting the vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) radiative transfer code. The HICO@CRI algorithm was applied on to six HICO™ images acquired in the northern Mediterranean basin, using the microphysical properties measured by the Acqua Alta Oceanographic Tower (AAOT) AERONET site. The HICO@CRI results obtained with AERONET products were validated with in situ measurements showing an accuracy expressed by r2 = 0.98. Additional runs of HICO@CRI on the six images were performed using maritime, continental and urban standard aerosol types to perform the accuracy assessment when standard aerosol types implemented in 6SV are used. The results highlight that the microphysical properties of the aerosol improve the accuracy of the atmospheric correction compared to standard aerosol types. The normalized root mean square (NRMSE) and the similar spectral value (SSV) of the water-leaving reflectance show reduced accuracy in atmospheric correction results when there is an increase in aerosol loading. This is mainly when the standard aerosol type used is characterized with different optical properties compared to the local aerosol. The results suggest that if a water quality analysis is needed the microphysical properties of the aerosol need to be taken into consideration in the atmospheric correction of hyperspectral data over coastal environments, because aerosols influence the accuracy of the retrieved water-leaving reflectance.


Author(s):  
Michael D. King ◽  
Steven Platnick ◽  
Galina Wind ◽  
G. Thomas Arnold ◽  
Roseanne T. Dominguez

2021 ◽  
Vol 250 ◽  
pp. 118254
Author(s):  
Andy Vicente-Luis ◽  
Samantha Tremblay ◽  
Joelle Dionne ◽  
Rachel Y.-W. Chang ◽  
Pierre F. Fogal ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 2001
Author(s):  
Antonella Boselli ◽  
Alessia Sannino ◽  
Mariagrazia D’Emilio ◽  
Xuan Wang ◽  
Salvatore Amoruso

During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere.


2006 ◽  
Vol 23 (9) ◽  
pp. 1195-1205 ◽  
Author(s):  
V. Chandrasekar ◽  
S. Lim ◽  
E. Gorgucci

Abstract To design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to develop that dataset is through theoretical models. This paper presents a methodology to generate realistic range profiles of radar variables at attenuating frequencies, such as X band, for rain medium. Fundamental microphysical properties of precipitation, namely, size and shape distribution information, are used to generate realistic profiles of X band starting with S-band observation. Conditioning the simulation from S band maintains the natural distribution of rainfall microphysical parameters. Data from the Colorado State University’s University of Chicago–Illinois State Water Survey (CHILL) radar and the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-POL) are used to simulate X-band radar variables. Three procedures to simulate the radar variables and sample applications are presented.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2021 ◽  
pp. 105818
Author(s):  
María-Ángeles López-Cayuela ◽  
Marcos Herreras-Giralda ◽  
Carmen Córdoba-Jabonero ◽  
Anton Lopatin ◽  
Oleg Dubovik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document