The impact of tropical sea surface temperatures on various measures of Atlantic tropical cyclone activity

2007 ◽  
Vol 92 (3-4) ◽  
pp. 249-255 ◽  
Author(s):  
P. A. Steenhof ◽  
W. A. Gough
2013 ◽  
Vol 26 (7) ◽  
pp. 2288-2301 ◽  
Author(s):  
Kerry Emanuel ◽  
Susan Solomon ◽  
Doris Folini ◽  
Sean Davis ◽  
Chiara Cagnazzo

Abstract Virtually all metrics of Atlantic tropical cyclone activity show substantial increases over the past two decades. It is argued here that cooling near the tropical tropopause and the associated decrease in tropical cyclone outflow temperature contributed to the observed increase in tropical cyclone potential intensity over this period. Quantitative uncertainties in the magnitude of the cooling are important, but a broad range of observations supports some cooling. Downscalings of the output of atmospheric general circulation models (AGCMs) that are driven by observed sea surface temperatures and sea ice cover produce little if any increase in Atlantic tropical cyclone metrics over the past two decades, even though observed variability before roughly 1970 is well simulated by some of the models. Part of this shortcoming is traced to the failure of the AGCMs examined to reproduce the observed cooling of the lower stratosphere and tropical tropopause layer (TTL) over the past few decades. The authors caution against using sea surface temperature or proxies based on it to make projections of tropical cyclone activity as there can be significant contributions from other variables such as the outflow temperature. The proposed mechanisms of TTL cooling (e.g., ozone depletion and stratospheric circulation changes) are reviewed, and the need for improved representations of these processes in global models in order to improve projections of future tropical cyclone activity is emphasized.


2009 ◽  
Vol 22 (17) ◽  
pp. 4723-4734 ◽  
Author(s):  
Stephen T. Garner ◽  
Isaac M. Held ◽  
Thomas Knutson ◽  
Joseph Sirutis

Abstract Atlantic tropical cyclone activity has trended upward in recent decades. The increase coincides with favorable changes in local sea surface temperature and other environmental indices, principally associated with vertical shear and the thermodynamic profile. The relative importance of these environmental factors has not been firmly established. A recent study using a high-resolution dynamical downscaling model has captured both the trend and interannual variations in Atlantic storm frequency with considerable fidelity. In the present work, this downscaling framework is used to assess the importance of the large-scale thermodynamic environment relative to other factors influencing Atlantic tropical storms. Separate assessments are done for the recent multidecadal trend (1980–2006) and a model-projected global warming environment for the late 21st century. For the multidecadal trend, changes in the seasonal-mean thermodynamic environment (sea surface temperature and atmospheric temperature profile at fixed relative humidity) account for more than half of the observed increase in tropical cyclone frequency, with other seasonal-mean changes (including vertical shear) having a somewhat smaller combined effect. In contrast, the model’s projected reduction in Atlantic tropical cyclone activity in the warm climate scenario appears to be driven mostly by increased seasonal-mean vertical shear in the western Atlantic and Caribbean rather than by changes in the SST and thermodynamic profile.


2014 ◽  
Vol 27 (14) ◽  
pp. 5311-5328 ◽  
Author(s):  
Christina M. Patricola ◽  
R. Saravanan ◽  
Ping Chang

Abstract Atlantic tropical cyclone (TC) activity is influenced by interannual tropical Pacific sea surface temperature (SST) variability characterized by the El Niño–Southern Oscillation (ENSO), as well as interannual-to-decadal variability in the interhemispheric gradient in tropical Atlantic SST characterized by the Atlantic meridional mode (AMM). Individually, the negative AMM phase (cool northern and warm southern tropical Atlantic SST anomalies) and El Niño each inhibit Atlantic TCs, and vice versa. The impact of concurrent strong phases of the ENSO and AMM on Atlantic TC activity is investigated. The response of the atmospheric environment relevant for TCs is evaluated with a genesis potential index. Composites of observed accumulated cyclone energy (ACE) suggest that ENSO and AMM can amplify or dampen the influence of one another on Atlantic TCs. To support the observational analysis, numerical simulations are performed using a 27-km resolution regional climate model. The control simulation uses observed SST and lateral boundary conditions (LBCs) of 1980–2000, and perturbed experiments are forced with ENSO phases through LBCs and eastern tropical Pacific SST and AMM phases through Atlantic SST. Simultaneous strong El Niño and strongly positive AMM, as well as strong concurrent La Niña and negative AMM, produce near-average Atlantic ACE suggesting compensation between the two influences, consistent with the observational analysis. Strong La Niña and strongly positive AMM together produce extremely intense Atlantic TC activity, supported largely by above average midtropospheric humidity, while strong El Niño and negative AMM together are not necessary conditions for significantly reduced Atlantic tropical cyclone activity.


Geology ◽  
2019 ◽  
Vol 47 (11) ◽  
pp. 1074-1078 ◽  
Author(s):  
Mattia Tagliavento ◽  
Cédric M. John ◽  
Lars Stemmerik

Abstract The Cretaceous Earth, with its greenhouse climate and absence of major ice caps in the polar regions, represents an extreme scenario for modeling future warming. Despite considerable efforts, we are just at the verge of fully understanding the conditions of a warm Earth, and better, more extensive proxy evidence is needed to solve existing discrepancies between the applied temperature proxies. In particular, the Maastrichtian temperature trends are controversial, since data indicate cooling in the South Atlantic and contemporary warming of the North Atlantic. The “heat piracy” hypothesis involves northward heat transport to midlatitudes via oceanic currents and is used to explain the contrasting polar cooling/warming patterns. Here, we present Δ47 and δ18O data from nine coccolith-enriched samples from a shallow core taken from the Danish Basin (Chalk Sea), representing a key location at the northern mid-latitudes. Based on Δ47 data of coccolith-enriched material, sea-surface temperatures for the late Campanian–Maastrichtian ranged from 24 °C to 30 °C, with an average of 25.9 °C ± 2 °C. This is 4–6 °C higher than estimates based on Δ47 of bulk samples and 8–10 °C higher than reported temperatures based on bulk δ18O data from the same core. However, these higher temperature estimates are lower, but overall in line with estimates of Late Cretaceous tropical sea-surface temperatures from TEX86 (tetraether index of 86 carbons), when considering latitudinal differences. The study highlights the potential of clumped isotope paleothermometry on coccoliths as a valid, reliable proxy with which to reconstruct sea-surface temperatures.


Sign in / Sign up

Export Citation Format

Share Document