atlantic meridional mode
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 34 (9) ◽  
pp. 3343-3354
Author(s):  
Laura Paccini ◽  
Cathy Hohenegger ◽  
Bjorn Stevens

AbstractThis study investigates whether the representation of explicit and parameterized convection influences the response to the Atlantic meridional mode (AMM). The main focus is on the precipitation response to the AMM-SST pattern, but possible implications for the atmospheric feedback on SST are also examined by considering differences in the circulation response between explicit and parameterized convection. On the basis of analysis from observations, SST composites are built to represent the positive and negative AMM. These SST patterns, in addition to the March–May climatology, are prescribed to the atmospheric ICON model. High-resolution simulations with explicit convection (E-CON) and coarse-resolution simulations with parameterized convection (P-CON) are used over a nested tropical Atlantic Ocean domain and a global domain, respectively. Our results show that a meridional shift of about 1° in the precipitation climatology explains most of the response to the AMM-SST pattern in simulations both with explicit convection and with parameterized convection. Our results also indicate a linearity in the precipitation response to the positive and negative AMM in E-CON, in contrast to P-CON. Further analysis of the atmospheric response to the AMM reveals that anomalies in the wind-driven enthalpy fluxes are generally stronger in E-CON than in P-CON. This result suggests that SST anomalies would be amplified more strongly in coupled simulations using an explicit representation of convection.


Author(s):  
Cleber Souza Correa ◽  
Roberto Lage Guedes ◽  
André Muniz Marinho da Rocha ◽  
Karlmer Abel Bueno Corrêa

Using the 1951-2017 historical series of the Atlantic Meridional Mode (AMM) index and the monthly number of sunspots, it was possible to observe a significant association between them. The use of wavelet and cross-wavelet analysis showed the presence of multidecadal cycles pronounced in eleven years, as well as cycles of 2.66 and 5.33. AMM index showed, in the part of the Sea Surface Temperature (SST), the presence of a weak signal of 21.33 years. Influence and association of sunspot variability on surface temperature in Northern and Northeastern regions of Brazil were investigated. Using a non-parametric statistical correlation test, the historical series of surface temperature anomalies in five locations (Belém, São Luiz, Fortaleza, Fernando de Noronha, and Natal) were compared with the monthly solar-series anomalies. The temperature series used were the minimum monthly average, the monthly average, and maximum monthly average temperatures, with their respective anomalies in relation to the mean. However, among all the series (except for São Luiz), the analyzed minimum temperature anomalies showed a negative correlation with sunspots. As a preliminary result, the analyzed climatic indexes present an apparent degree of memory associated with the variability of sunspot activity.


2018 ◽  
Vol 31 (21) ◽  
pp. 8875-8894 ◽  
Author(s):  
Sultan Hameed ◽  
Christopher L. P. Wolfe ◽  
Lequan Chi

The path of the Gulf Stream as it leaves the continental shelf near Cape Hatteras is marked by a sharp gradient in ocean temperature known as the North Wall. Previous work in the literature has considered processes related to the North Atlantic Oscillation (NAO) in triggering latitudinal displacements of the North Wall position. This paper presents evidence that the Atlantic meridional mode (AMM) also impacts interannual variations of the North Wall position. The AMM signal from the tropics propagates to the Gulf Stream near the 200-m depth, and there are two time scales for this interaction. Anomalous Ekman suction induced by AMM cools the tropical Atlantic. The cold water in the Caribbean Sea is entrained into the currents feeding the Gulf Stream, and this cooling signal reaches the North Wall within a year. A second mechanism involves cold anomalies in the western tropical Atlantic, which initially propagate westward as baroclinic planetary waves, reaching the Gulf Stream and resulting in a southward shift in the North Wall position after a delay of about one year. In an analysis for the period 1961–2015, AMM’s signal dominates North Wall fluctuations in the upper 300 m, while NAO is the major influence below ~500 m; the influence of both the teleconnections is seen between 300 and 500 m. The relationship between the Atlantic meridional overturning circulation (AMOC) and the North Wall is investigated for the 2005–15 period and found to be statistically significant only at the sea surface in one of the three North Wall indices used.


2016 ◽  
Vol 49 (5-6) ◽  
pp. 1665-1679 ◽  
Author(s):  
Dillon J. Amaya ◽  
Michael J. DeFlorio ◽  
Arthur J. Miller ◽  
Shang-Ping Xie

2016 ◽  
Vol 48 (1-2) ◽  
pp. 631-647 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Gabriele Villarini ◽  
Hiroyuki Murakami ◽  
Anthony Rosati ◽  
...  

2014 ◽  
Vol 27 (14) ◽  
pp. 5311-5328 ◽  
Author(s):  
Christina M. Patricola ◽  
R. Saravanan ◽  
Ping Chang

Abstract Atlantic tropical cyclone (TC) activity is influenced by interannual tropical Pacific sea surface temperature (SST) variability characterized by the El Niño–Southern Oscillation (ENSO), as well as interannual-to-decadal variability in the interhemispheric gradient in tropical Atlantic SST characterized by the Atlantic meridional mode (AMM). Individually, the negative AMM phase (cool northern and warm southern tropical Atlantic SST anomalies) and El Niño each inhibit Atlantic TCs, and vice versa. The impact of concurrent strong phases of the ENSO and AMM on Atlantic TC activity is investigated. The response of the atmospheric environment relevant for TCs is evaluated with a genesis potential index. Composites of observed accumulated cyclone energy (ACE) suggest that ENSO and AMM can amplify or dampen the influence of one another on Atlantic TCs. To support the observational analysis, numerical simulations are performed using a 27-km resolution regional climate model. The control simulation uses observed SST and lateral boundary conditions (LBCs) of 1980–2000, and perturbed experiments are forced with ENSO phases through LBCs and eastern tropical Pacific SST and AMM phases through Atlantic SST. Simultaneous strong El Niño and strongly positive AMM, as well as strong concurrent La Niña and negative AMM, produce near-average Atlantic ACE suggesting compensation between the two influences, consistent with the observational analysis. Strong La Niña and strongly positive AMM together produce extremely intense Atlantic TC activity, supported largely by above average midtropospheric humidity, while strong El Niño and negative AMM together are not necessary conditions for significantly reduced Atlantic tropical cyclone activity.


2013 ◽  
Vol 26 (13) ◽  
pp. 4649-4663 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Bohua Huang ◽  
Jieshun Zhu

Abstract In this work, the authors analyze the physical mechanisms of interannual variability of the upper-ocean temperature anomaly (OTA) in the equatorial Atlantic Ocean, using ocean reanalysis from the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System. The variability of equatorial Atlantic OTA is dominated by two leading modes. The first mode is characterized by same-sign variation along the thermocline with pronounced amplitude in the central and eastern equatorial Atlantic. This mode represents the modulation of the overall thermocline depth at the equator generated by net heat convergence in the equatorial ocean, with heat content first accumulated mainly in the off-equatorial northwestern Atlantic in response to anomalous wind curl associated with Atlantic meridional mode. The second leading mode shows an opposite variation between the western and eastern Atlantic. This mode is mainly driven by the zonal wind stress fluctuation confined in the southwestern tropical and equatorial Atlantic and reflects the equatorial balanced response between the zonal slope of the equatorial thermocline depth and the atmospheric zonal wind variations with pronounced surface wind and ocean anomalies in the southwestern and equatorial ocean. The different characteristics of these two modes suggest that they may occur independently. In fact, evolution of the two leading modes is approximately in quadrature, and they may also occur in sequence on interannual time scales. The two leading mode-associated air–sea interaction processes suggest that the Atlantic meridional mode and zonal mode are statistically and physically connected in their evolution.


2012 ◽  
Vol 25 (4) ◽  
pp. 1194-1212 ◽  
Author(s):  
Daniel J. Vimont

Abstract Predictability and variability of the tropical Atlantic Meridional Mode (AMM) is investigated using linear inverse modeling (LIM). Analysis of the LIM using an “energy” norm identifies two optimal structures that experience some transient growth, one related to El Niño–Southern Oscillation (ENSO) and the other to the Atlantic multidecadal oscillation (AMO)/AMM patterns. Analysis of the LIM using an AMM-norm identifies an “AMM optimal” with similar structure to the second energy optima (OPT2). Both the AMM-optimal and OPT2 exhibit two bands of SST anomalies in the mid- to high-latitude Atlantic. The AMM-optimal also contains some elements of the first energy optimal (ENSO), indicating that the LIM captures the well-known relationship between ENSO and the AMM. Seasonal correlations of LIM predictions with the observed AMM show enhanced AMM predictability during boreal spring and for long-lead (around 11–15 months) forecasts initialized around September. Regional LIMs were constructed to determine the influence of tropical Pacific and mid- to high-latitude Atlantic SST on the AMM. Analysis of the regional LIMs indicates that the tropical Pacific is responsible for the AMM predictability during boreal spring. Mid- to high-latitude SST anomalies contribute to boreal summer and fall AMM predictability, and are responsible for the enhanced predictability from September initial conditions. Analysis of the empirical normal modes of the full LIM confirms these physical relationships. Results indicate a potentially important role for mid- to high-latitude Atlantic SST anomalies in generating AMM (and tropical Atlantic SST) variations, though it is not clear whether those anomalies provide any societally useful predictive skill.


Sign in / Sign up

Export Citation Format

Share Document