scholarly journals The Roles of Wind Shear and Thermal Stratification in Past and Projected Changes of Atlantic Tropical Cyclone Activity

2009 ◽  
Vol 22 (17) ◽  
pp. 4723-4734 ◽  
Author(s):  
Stephen T. Garner ◽  
Isaac M. Held ◽  
Thomas Knutson ◽  
Joseph Sirutis

Abstract Atlantic tropical cyclone activity has trended upward in recent decades. The increase coincides with favorable changes in local sea surface temperature and other environmental indices, principally associated with vertical shear and the thermodynamic profile. The relative importance of these environmental factors has not been firmly established. A recent study using a high-resolution dynamical downscaling model has captured both the trend and interannual variations in Atlantic storm frequency with considerable fidelity. In the present work, this downscaling framework is used to assess the importance of the large-scale thermodynamic environment relative to other factors influencing Atlantic tropical storms. Separate assessments are done for the recent multidecadal trend (1980–2006) and a model-projected global warming environment for the late 21st century. For the multidecadal trend, changes in the seasonal-mean thermodynamic environment (sea surface temperature and atmospheric temperature profile at fixed relative humidity) account for more than half of the observed increase in tropical cyclone frequency, with other seasonal-mean changes (including vertical shear) having a somewhat smaller combined effect. In contrast, the model’s projected reduction in Atlantic tropical cyclone activity in the warm climate scenario appears to be driven mostly by increased seasonal-mean vertical shear in the western Atlantic and Caribbean rather than by changes in the SST and thermodynamic profile.

2015 ◽  
Vol 28 (24) ◽  
pp. 9678-9696 ◽  
Author(s):  
Louis-Philippe Caron ◽  
Mathieu Boudreault ◽  
Suzana J. Camargo

Abstract Variability in tropical cyclone activity in the eastern Pacific basin has been linked to a wide range of climate factors, yet the dominant factors driving this variability have yet to be identified. Using Poisson regressions and a track clustering method, the authors analyze and compare the climate influence on cyclone activity in this region. The authors show that local sea surface temperature and upper-ocean heat content as well as large-scale conditions in the northern Atlantic are the dominant influence in modulating eastern North Pacific tropical cyclone activity. The results also support previous findings suggesting that the influence of the Atlantic Ocean occurs through changes in dynamical conditions over the eastern Pacific. Using model selection algorithms, the authors then proceed to construct a statistical model of eastern Pacific tropical cyclone activity. The various model selection techniques used agree in selecting one predictor from the Atlantic (northern North Atlantic sea surface temperature) and one predictor from the Pacific (relative sea surface temperature) to represent the best possible model. Finally, we show that this simple model could have predicted the anomalously high level of activity observed in 2014.


2019 ◽  
Vol 14 (12) ◽  
pp. 124052
Author(s):  
Banglin Zhang ◽  
Renhe Zhang ◽  
Rachel T Pinker ◽  
Yerong Feng ◽  
Changchun Nie ◽  
...  

2013 ◽  
Vol 26 (7) ◽  
pp. 2288-2301 ◽  
Author(s):  
Kerry Emanuel ◽  
Susan Solomon ◽  
Doris Folini ◽  
Sean Davis ◽  
Chiara Cagnazzo

Abstract Virtually all metrics of Atlantic tropical cyclone activity show substantial increases over the past two decades. It is argued here that cooling near the tropical tropopause and the associated decrease in tropical cyclone outflow temperature contributed to the observed increase in tropical cyclone potential intensity over this period. Quantitative uncertainties in the magnitude of the cooling are important, but a broad range of observations supports some cooling. Downscalings of the output of atmospheric general circulation models (AGCMs) that are driven by observed sea surface temperatures and sea ice cover produce little if any increase in Atlantic tropical cyclone metrics over the past two decades, even though observed variability before roughly 1970 is well simulated by some of the models. Part of this shortcoming is traced to the failure of the AGCMs examined to reproduce the observed cooling of the lower stratosphere and tropical tropopause layer (TTL) over the past few decades. The authors caution against using sea surface temperature or proxies based on it to make projections of tropical cyclone activity as there can be significant contributions from other variables such as the outflow temperature. The proposed mechanisms of TTL cooling (e.g., ozone depletion and stratospheric circulation changes) are reviewed, and the need for improved representations of these processes in global models in order to improve projections of future tropical cyclone activity is emphasized.


2010 ◽  
Vol 37 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Timothy E. LaRow ◽  
Lydia Stefanova ◽  
Dong-Wook Shin ◽  
Steven Cocke

Sign in / Sign up

Export Citation Format

Share Document