scholarly journals The atmospheric boundary layer structure over the open and ice-covered Baltic Sea: in situ measurements compared to simulations with the regional model REMO

2009 ◽  
Vol 118 (4) ◽  
pp. 641-653 ◽  
Author(s):  
Burghard Brümmer ◽  
Amélie Kirchgäßner ◽  
Gerd Müller
2020 ◽  
Vol 13 (12) ◽  
pp. 6965-6987
Author(s):  
Jae-Sik Min ◽  
Moon-Soo Park ◽  
Jung-Hoon Chae ◽  
Minsoo Kang

Abstract. Accurate boundary layer structure and height are critical in the analysis of the features of air pollutants and local circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary layer structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary layer heights (ABLHs). In this study, an algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul city, Korea. A maximum of 19 ABLHs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface inversion and environmental lapse rate methods using the potential temperature from the microwave radiometer. The ISABLE algorithm can find an optimal ABLH from post-processing, such as k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde-derived ABLHs than those obtained using the most conventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHs estimated by ISABLE are expected to contribute to the parameterization of vertical diffusion in the atmospheric boundary layer.


1996 ◽  
Vol 35 (Part 1, No. 4A) ◽  
pp. 2168-2169
Author(s):  
Ichiro Matsui ◽  
Nobuo Sugimoto ◽  
Shamil Maksyutov ◽  
Gen Inoue ◽  
Evgeny Kadygrov ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Conor Milroy ◽  
Giovanni Martucci ◽  
Simone Lolli ◽  
Sophie Loaec ◽  
Laurent Sauvage ◽  
...  

Twenty-one cases of boundary-layer structure were retrieved by three co-located remote sensors, One LIDAR and two ceilometers at the coastal site of Mace Head, Ireland. Data were collected during the ICOS field campaign held at the GAW Atmospheric Station of Mace Head, Ireland, from 8th to 28th of June, 2009. The study is a two-step investigation of the BL structure based on (i) the intercomparison of the backscatter profiles from the three laser sensors, namely the Leosphere ALS300 LIDAR, the Vaisala CL31 ceilometer and the Jenoptik CHM15K ceilometer; (ii) and the comparison of the backscatter profiles with twenty-three radiosoundings performed during the period from the 8th to the 15th of June, 2009. The sensor-independent Temporal Height-Tracking algorithm was applied to the backscatter profiles as retrieved by each instrument to determine the decoupled structure of the BL over Mace Head. The LIDAR and ceilometers-retrieved BL heights were compared to the radiosoundings temperature profiles. The comparison between the remote and the in-situ data proved the existence of the inherent link between temperature and aerosol backscatter profiles and opened at future studies focusing on the further assessment of LIDAR-ceilometer comparison.


Sign in / Sign up

Export Citation Format

Share Document