The Atmospheric Boundary-Layer Structure Within A Cold Air Outbreak: Comparison Of In Situ, Lidar And Satellite Measurements With Three-Dimensional Simulations

2001 ◽  
Vol 99 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Cyrille Flamant ◽  
Marc Georgelin ◽  
Laurent Menut ◽  
Jacques Pelon ◽  
Philippe Bougeault
2020 ◽  
Vol 13 (12) ◽  
pp. 6965-6987
Author(s):  
Jae-Sik Min ◽  
Moon-Soo Park ◽  
Jung-Hoon Chae ◽  
Minsoo Kang

Abstract. Accurate boundary layer structure and height are critical in the analysis of the features of air pollutants and local circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary layer structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary layer heights (ABLHs). In this study, an algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul city, Korea. A maximum of 19 ABLHs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface inversion and environmental lapse rate methods using the potential temperature from the microwave radiometer. The ISABLE algorithm can find an optimal ABLH from post-processing, such as k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde-derived ABLHs than those obtained using the most conventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHs estimated by ISABLE are expected to contribute to the parameterization of vertical diffusion in the atmospheric boundary layer.


1996 ◽  
Vol 35 (Part 1, No. 4A) ◽  
pp. 2168-2169
Author(s):  
Ichiro Matsui ◽  
Nobuo Sugimoto ◽  
Shamil Maksyutov ◽  
Gen Inoue ◽  
Evgeny Kadygrov ◽  
...  

Author(s):  
Stepan Tolkachev ◽  
Victor Kozlov ◽  
Valeriya Kaprilevskaya

In this article, the results of research about stationary and secondary disturbances development behind the localized and two-dimensional roughness elements are presented. It is shown that the two-dimensional roughness element has a destabilizing effect on the disturbances induced by the three-dimensional roughness element lying upstream. In this case, the two-dimensional roughness element causes the appearance of stationary structures, and then secondary perturbations, whose frequency range lies lower than in the case of the stationary vortices excited by a three-dimensional roughness element.


2016 ◽  
Vol 29 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
Jennifer Fletcher ◽  
Shannon Mason ◽  
Christian Jakob

Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.


Sign in / Sign up

Export Citation Format

Share Document