Water supply risk analysis of Panjiakou reservoir in Luanhe River basin of China and drought impacts under environmental change

2019 ◽  
Vol 137 (3-4) ◽  
pp. 2393-2408 ◽  
Author(s):  
Jianzhu Li ◽  
Zhenxing Gao ◽  
Yuangang Guo ◽  
Ting Zhang ◽  
Peizhen Ren ◽  
...  
2021 ◽  
Vol 13 (11) ◽  
pp. 6005
Author(s):  
Gimoon Jeong ◽  
Doosun Kang

Rational water resource management is used to ensure a stable supply of water by predicting the supply of and demand for future water resources. However, rational water allocation will become more difficult in the future owing to the effects of climate change, causing water shortages and disputes. In this study, an advanced hydro-economic water allocation and management model (WAMM) was introduced by improving the optimization scheme employed in conventional models and incorporating the economic value of water. By relying upon economic valuation, the WAMM can support water allocation efforts that focus not only on the stability but also on the economic benefits of water supply. The water supply risk was evaluated following the different objective functions and optimization methods provided by the WAMM using a case study of the Namhan River basin in South Korea under a climate change scenario over the next 30 years. The water shortages and associated economic damage were compared, and the superior ability of WAMM to mitigate future water shortages using economic valuation and full-step linear programming (FSLP) optimization was demonstrated. It is expected that the WAMM can be applied to help resolve water shortages and disputes among river basin units under severe drought conditions.


Author(s):  
Fang Wan ◽  
Lingfeng Xiao ◽  
Qihui Chai ◽  
Li Li

Abstract With the rapid development of economy and society, the contradiction between supply and demand of water resources is increasing. Efficient utilization and allocation of limited water resources are one of the main means to solve the above contradictions. In this paper, the multidimensional joint distribution of natural streamflow series in reservoirs is constructed by introducing the mixed Copula function, and the probability of wet and dry encounters between natural streamflow is analyzed. Luan River is located in the northeastern part of Hebei Province, China, taking the group of Panjiakou Reservoir, Douhe Reservoir and Yuqiao Reservoir in the downstream of Luan River Basin as an example, the probabilities of synchronous and asynchronous abundance and depletion of inflow from the reservoirs are calculated. The results show that the probability of natural streamflow series between reservoirs is 61.14% for wetness and dryness asynchronous, which has certain mutual compensation ability. Therefore, it is necessary to minimize the risk of water supply security in Tianjin, Tangshan and other cities, and strengthen the optimal joint water supply scheduling of reservoirs. The research results are reasonable and reliable, which can provide reference for water supply operation of other basins.


2009 ◽  
Vol 45 (8) ◽  
Author(s):  
Balaji Rajagopalan ◽  
Kenneth Nowak ◽  
James Prairie ◽  
Martin Hoerling ◽  
Benjamin Harding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document