Lead-lag correlations between snow cover and meteorological factors at multi-time scales in the Tibetan Plateau under climate warming

Author(s):  
Xiao Qiao ◽  
Jintao Liu ◽  
Shuhong Wang ◽  
Jiarong Wang ◽  
Haijuan Ji ◽  
...  
2020 ◽  
Author(s):  
Xiaodong Huang ◽  
Changyu Liu ◽  
Zhaojun Zheng ◽  
Yunlong Wang ◽  
Xubing Li ◽  
...  

Abstract. Based on a snow depth dataset retrieved from meteorological stations, this experiment explored snow indices, including snow depth (SD), snow covered days (SCDs), and snow phenology variations, across China from 1951 to 2018. The results indicated that the snow cover in China exhibits regional differences. The annual mean SD tended to increase, and the increases in mean and maximum snow depth were 0.04 cm and 0.1 cm per decade, respectively. SCDs tended to increase by approximately 0.5 days per decade. The significant increases were concentrated at latitudes higher than 40° N, especially in Northeast China. However, in the Tibetan Plateau, the SD and SCDs tended to decrease but not significantly. Regarding the snow phenology variations, the snow duration days in China decreased, and 25.2 % of the meteorological stations showed significant decreasing trends. This result was mainly caused by the postponement of the snow onset date and the advancement of the snow end date. Geographical and meteorological factors are closely related to snow cover, especially the change in temperature, which will lead to significant changes in snow depth and phenology.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yan Song ◽  
Zhicai Li ◽  
Yu Gu ◽  
Ziniu Xiao

Solar activity is one of the main external forcing factors driving the Earth’s climate system to change. The snow cover over the Tibetan Plateau is an important physical factor affecting the East Asian climate. At present, insufficient research on the connection between solar activity and snow cover over the Tibetan Plateau has been carried out. Using Solar Radio Flux (SRF), Solar Sunspot Number (SSN), and Total Solar Irradiance (TSI) data, this paper calculated the correlation coefficients with snow indices over the Tibetan Plateau, such as winter and spring snow depth (WSD/SSD) and snow day number (WSDN/SSDN). These snow indices are obtained from the daily gauge snow data in the Tibetan Plateau. Through correlation analyses, it is found that there are significant synchronous or lag correlations between snow indices and solar parameters on multi-time scales. In particular, the Spring Snow Day Number (SSDN) is of significant synchronous or lag correlation with SRF, SSN, and TSI on multi-time scales. It is further found that SSDN over the Tibetan Plateau has more stable positive correlations with SRF by using the 21-year running mean and cross spectrum analyses. Therefore, SSDN can be ascertained to be the most sensitive snow index to the solar activity compared with other snow indices. Moreover, its influence on summer precipitation of China is strongly regulated by solar activity. In high solar activity years (HSAY), the significant correlated area of summer precipitation in China to SSDN is located further north than that in low solar activity years (LSAY). Such impact by solar activity is also remarkable after excluding the impact of ENSO (i.e., El Niño–Southern Oscillation) events. These results provide support for the application of snow indices in summer rainfall prediction in China.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 161
Author(s):  
Liheng Lu ◽  
Xiaoqian Shen ◽  
Ruyin Cao

The Tibetan Plateau, the highest plateau in the world, has experienced strong climate warming during the last few decades. The greater increase of temperature at higher elevations may have strong impacts on the vertical movement of vegetation activities on the plateau. Although satellite-based observations have explored this issue, these observations were normally provided by the coarse satellite data with a spatial resolution of more than hundreds of meters (e.g., GIMMS and MODIS), which could lead to serious mixed-pixel effects in the analyses. In this study, we employed the medium-spatial-resolution Landsat NDVI data (30 m) during 1990–2019 and investigated the relationship between temperature and the elevation-dependent vegetation changes in six mountainous regions on the Tibetan Plateau. Particularly, we focused on the elevational movement of the vegetation greenness isoline to clarify whether the vegetation greenness isoline moves upward during the past three decades because of climate warming. Results show that vegetation greening occurred in all six mountainous regions during the last three decades. Increasing temperatures caused the upward movement of greenness isoline at the middle and high elevations (>4000 m) but led to the downward movement at lower elevations for the six mountainous regions except for Nyainqentanglha. Furthermore, the temperature sensitivity of greenness isoline movement changes from the positive value to negative value by decreasing elevations, suggesting that vegetation growth on the plateau is strongly regulated by other factors such as water availability. As a result, the greenness isoline showed upward movement with the increase of temperature for about 59% pixels. Moreover, the greenness isoline movement increased with the slope angles over the six mountainous regions, suggesting the influence of terrain effects on the vegetation activities. Our analyses improve understandings of the diverse response of elevation-dependent vegetation activities on the Tibetan Plateau.


Author(s):  
Shirui Hao ◽  
Lingmei Jiang ◽  
Jiancheng Shi ◽  
Gongxue Wang ◽  
Xiaojing Liu

Author(s):  
Y. Ha ◽  
Y. M. Zhu ◽  
Y. J. Hu ◽  
Z. Zhong

Abstract. Abrupt interdecadal changes in summer precipitation (May – September) over the Indochina Peninsula in the past 40 years have been investigated based on the NCEP-NCAR reanalysis product over 1979–2013 and multiple precipitation datasets. The mechanism for the abrupt change is explored. Results indicate that an abrupt interdecadal change in summer precipitation over the Indochina Peninsula occurred in the middle 1990s, and the annual mean summer precipitation during 1994–2002 increased by about 10% compared to that during 1982–1993. The most significant precipitation change occurred in the central and northern peninsula. Further analysis reveals that the interdecadal decrease in snow cover over the Tibetan Plateau in the winter and spring contributed to the summer precipitation increase over the Indochina Peninsula. The decrease in snow cover over the Tibetan Plateau actually increased the thermal contrast between the Tibetan Plateau and the tropical Indian Ocean-northwestern Pacific, leading to intensified summer monsoon over the northwestern Pacific and the South China Sea. As a result, westerly anomalies occurred from the Bay of Bengal to the northwestern Pacific, while anomalous cyclonic circulation prevailed in the upper levels above East Asia. Correspondingly, the western Pacific subtropical high weakened and shifted eastward. Under the joint effects of the above circulation patterns, the atmosphere became wetter in the Indochina Peninsula and summer precipitation increased. Results of the present study provide a theoretical basis for the prediction of long-term summer precipitation change in the Indochina Peninsula.


2017 ◽  
Vol 9 (12) ◽  
pp. 1332 ◽  
Author(s):  
Hui Liang ◽  
Xiaodong Huang ◽  
Yanhua Sun ◽  
Yunlong Wang ◽  
Tiangang Liang

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoyue Wang ◽  
Chaoyang Wu ◽  
Huanjiong Wang ◽  
Alemu Gonsamo ◽  
Zhengjia Liu

Sign in / Sign up

Export Citation Format

Share Document