scholarly journals Size effect in micro-scale cantilever beam bending

2011 ◽  
Vol 219 (3-4) ◽  
pp. 291-307 ◽  
Author(s):  
S. H. Chen ◽  
B. Feng
2021 ◽  
Author(s):  
YAO QIAO ◽  
QIWEI ZHANG ◽  
TROY NAKAGAWA ◽  
MARCO SALVIATO

This work proposes an investigation on size effects in micro-scale splitting crack initiation and propagation and their consequences on the macro-scale structural behavior carbon-fiber reinforced polymers under transverse tension. Towards this goal, size effect tests were experimentally conducted on both notch-free [90]n composites and specimens with different notch types under three-point bending. The mechanical tests were followed by morphological studies to identify the micro-scale damage mechanisms and their evolution. The results clearly show that splitting crack initiation in the transverse direction of composites not only happens at the fiber/matrix interface but also in the matrix. Moreover, the subsequent development of these damage mechanisms can depend on the structure size. This interesting phenomenon inherently leads to size-dependent structural behavior which can be described through Baznt’s Size Effect Laws. This study on the splitting crack initiation and propagation can provide unprecedented information for the calibration and validation of micromechanical models for the damage behavior of fiber composites at the microscale.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 357 ◽  
Author(s):  
Bingyan Jiang ◽  
Yang Zou ◽  
Tao Liu ◽  
Wangqing Wu

The fluidity of a molten polymer plasticized by ultrasonic vibration was characterized by spiral flow testing based on an Archimedes spiral mold with microchannels. Mold inserts with various channel depths from 250 to 750 µm were designed and fabricated to represent the size effect under micro-scale. The effect of ultrasonic plasticizing parameters and the mold temperature on the flow length was studied to determine the rheological nature of polymers and control parameters. The results showed that the flow length decreased with reduced channel depth due to the size effect. By increasing ultrasonic amplitude, ultrasonic action time, plasticizing pressure, and mold temperature, the flow length could be significantly increased for both the amorphous polymer polymethyl methacrylate (PMMA) and the semi-crystalline polymers polypropylene (PP) and polyamide 66 (PA66). The enhanced fluidity of the ultrasonic plasticized polymer melt could be attributed to the significantly reduced shear viscosity.


2016 ◽  
Vol 685 ◽  
pp. 983-991 ◽  
Author(s):  
Z.L. Li ◽  
G.Y. Li ◽  
B. Li ◽  
L.X. Cheng ◽  
J.H. Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document