An analytical solution for out-of-plane deflection of a curved Timoshenko beam with strong nonlinear boundary conditions

2015 ◽  
Vol 226 (11) ◽  
pp. 3679-3694 ◽  
Author(s):  
S. Y. Lee ◽  
Q. Z. Yan
Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

Abstract The nonplanar responses of a beam clamped at one end and restrained by nonlinear springs at the other end is investigated under a primary resonance base excitation. The beam’s geometry and the springs’ linear stiffnesses are such that the system possesses a one-to-one autoparametric resonance between the nth in-plane and out-of-plane modes. The beam is modeled using Euler-Bernoulli theory and includes cubic geometric and inertia nonlinearities. The objective is to assess the influence of the nonlinear boundary conditions on the beam’s oscillations. To this end, the method of multiple scales is directly applied to the integral-partial-differential equations of motion and associated boundary conditions. The result is a set of four nonlinear ordinary-differential equations that govern the slow dynamics of the system. Solutions of these modulation equations are then used to characterize the system’s nonlinear behavior.


2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2018 ◽  
Vol 61 (4) ◽  
pp. 768-786 ◽  
Author(s):  
Liangliang Li ◽  
Jing Tian ◽  
Goong Chen

AbstractThe study of chaotic vibration for multidimensional PDEs due to nonlinear boundary conditions is challenging. In this paper, we mainly investigate the chaotic oscillation of a two-dimensional non-strictly hyperbolic equation due to an energy-injecting boundary condition and a distributed self-regulating boundary condition. By using the method of characteristics, we give a rigorous proof of the onset of the chaotic vibration phenomenon of the zD non-strictly hyperbolic equation. We have also found a regime of the parameters when the chaotic vibration phenomenon occurs. Numerical simulations are also provided.


Sign in / Sign up

Export Citation Format

Share Document