Further results on Eshelby’s tensor of an elliptic inclusion in orthotropic materials

2018 ◽  
Vol 229 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
Chun-Ron Chiang
2010 ◽  
Vol 107 (9) ◽  
pp. 369-375 ◽  
Author(s):  
C. Gaier ◽  
B. Unger ◽  
H. Dannbauer

2015 ◽  
Vol 22 (4) ◽  
pp. 666-682 ◽  
Author(s):  
Hasan Demirkoparan ◽  
Jose Merodio

In this paper, we examine the influence of swelling on the bulging bifurcation of inflated thin-walled cylinders under axial loading. We provide the bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure and swelling. We focus here on orthotropic materials with two preferred directions which are mechanically equivalent and are symmetrically disposed. Arterial wall tissue is modeled with this class of constitutive equation and the onset of bulging is considered to give aneurysm formation. It is shown that swelling may lead to compressive hoop stresses near the inner radius of the tube, which could have a potential benefit for preventing aneurysm formation. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of bifurcation are investigated. Finally, a boundary value problem is studied to show the robustness of the results.


PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 320-321
Author(s):  
Grieta Himpel ◽  
Ellen Kuhl ◽  
Andreas Menzel ◽  
Paul Steinmann

1967 ◽  
Vol 1 (2) ◽  
pp. 122-135 ◽  
Author(s):  
Staley F. Adams ◽  
M. Maiti ◽  
Richard E. Mark

This investigation was undertaken to develop a rigorous mathe matical solution of stress and strain for a composite pole con sisting of a reinforced plastics jacket laminated on a solid wood core. The wood and plastics are treated as orthotropic materials. The problem of bending of such poles as cantilever beams has been determined by the application of the principles of three- dimensional theory of elasticity. Values of all components of the stress tensor in cylindrical coordinates are given for the core and jacket. Exact values for the stresses have been obtained from computer results, using the basic elastic constants—Poisson's ratios, moduli of elasticity and moduli of rigidity—for each ma terial. A comparison of the numerical results of the exact solu tion with strength of materials solutions has been completed.


Sign in / Sign up

Export Citation Format

Share Document