scholarly journals Cellular pathways for viral transport through plasmodesmata

PROTOPLASMA ◽  
2010 ◽  
Vol 248 (1) ◽  
pp. 75-99 ◽  
Author(s):  
Annette Niehl ◽  
Manfred Heinlein
Author(s):  
K. Rekrut ◽  
K. Schleuter

Confirmation of herpes simplex virus (HSV) from genital lesions of obstetrical (OB) patients may affect both the management of the delivery and of the neonate.(l,2) During 1992 and 1993, 4,450 genital specimens from OB patients were submitted in viral transport media for herpes culture. The specimens were inoculated into MRC-5, Vero, and A-549 tissue culture tubes, incubated, and examined daily for 7 days for cytopathic effect (CPE). The original specimens were frozen at −70° C until final reports were issued. Culture tubes with CPE were tested by the Dupont Herpchek enzyme immuno assay (EIA) to confirm the presence of herpes simplex virus (HSV). (3,4) 170 OB patient specimens were positive by culture and confirmed by EIA.There were also 63 cultures exhibiting CPE ressembling HSV which were negative by EIA testing, which failed to pass in fresh tissue culture cells or progress to more enhanced CPE in culture. These original specimens were screened by electron microscopy after direct ultracentrifugation employing the Beckman airfuge with the EM 90 rotor on to formvar carbon-coated 300 mesh copper grids and negatively stained with 2% PTA.


Author(s):  
Robert P. Apkarian

A multitude of complex ultrastructural features are involved in endothelial cell (EC) gating and sorting of lipid through capillaries and into steroidogenic cells of the adrenal cortex. Correlative microscopy is necessary to distinguish the structural identity of features involved in specific cellular pathways. In addition to diaphragmed fenestrae that frequently appear in clusters, other 60-80 nm openings; plasmalemma vesicles (PV), channels and pockets fitted with diaphragms of the same dimension, coexist on the thin EC surface. Non-diaphragmed coated pits (CP) (100-120 nm) involved in receptor mediated endocytosis were also present on the EC membrane. The present study employed HRSEM of cryofractured and chromium coated specimens and low voltage HRSTEM of 80 nm thick LX-112 embedded sections stained with 2.0% uranyl acetate. Both preparations were imaged at 25 kV with a Topcon DS-130 FESEM equipped with in-lens stage and STEM detector.HRSEM images of the capillary lumen coated with a lnm continuous fine grain Cr film, provided the ability to scan many openings and resolve (SE-I contrast) the fine structure of diaphragm spokes and central densities (Fig. 1).


2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
NC Gassen ◽  
Y Han ◽  
G Wochnik ◽  
F Holsboer ◽  
T Rein

2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mallory I. Frederick ◽  
Ilka U. Heinemann

AbstractRNA homeostasis is regulated by a multitude of cellular pathways. Although the addition of untemplated adenine residues to the 3′ end of mRNAs has long been known to affect RNA stability, newly developed techniques for 3′-end sequencing of RNAs have revealed various unexpected RNA modifications. Among these, uridylation is most recognized for its role in mRNA decay but is also a key regulator of numerous RNA species, including miRNAs and tRNAs, with dual roles in both stability and maturation of miRNAs. Additionally, low levels of untemplated guanidine and cytidine residues have been observed as parts of more complex tailing patterns.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1583
Author(s):  
Sara Pescatori ◽  
Francesco Berardinelli ◽  
Jacopo Albanesi ◽  
Paolo Ascenzi ◽  
Maria Marino ◽  
...  

17β-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of “hormone” as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an “upgrade” to the vision of E2 as a “genotoxic hormone”, which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.


Sign in / Sign up

Export Citation Format

Share Document