Calcium changes in Robinia pseudoacacia pulvinar motor cells during nyctinastic closure mediated by phytochromes

PROTOPLASMA ◽  
2018 ◽  
Vol 256 (3) ◽  
pp. 615-629 ◽  
Author(s):  
Luisa Moysset ◽  
Esther Llambrich ◽  
Esther Simón
Pneumologie ◽  
2004 ◽  
Vol 58 (11) ◽  
Author(s):  
S Kespohl ◽  
R Merget ◽  
M Gellert ◽  
T Brüning ◽  
M Raulf-Heimsoth

Author(s):  
V.V. Tanyukevich ◽  
◽  
S.V. Tyurin ◽  
D.V. Khmeleva ◽  
A.A. Kvasha ◽  
...  

Works on protective afforestation are carried out in order to protect agricultural land from degradation processes, as well as to improve the microclimate of land. The research purpose is to study the bioproductivity and environmental role of Robinia pseudoacacia L. forest shelterbelts in the conditions of the Kuban lowland. The approved and generally accepted methods of forest valuation, forest land reclamation, botany, and mathematical statistics were applied. Plantings were created according to the standard technology for the steppe zone of the Russian Federation. The area of forest shelterbelts is 62.4 ths ha, including 5 % of the young growth (I state class), 80 % of middle-aged forest plantings (II state class), 10 % of maturing plantings (II state class), 5 % of mature and overmature plantings (III state class). Living ground cover is formed by the following species: Koeleria pyramidata L., Poa pratensis L., Festuca pratensis H., Elytrígia repens L., Dactylis glomerata L., and Phlum pratense L. Aboveground phytomass is 100–300 g/m2; height is 25–32 cm. Plantings are characterized by the quality classes: young growth – I and II; middle-aged and maturing – III; mature and overmature – IV. At the age of natural maturity (70 years), the Robinia trunk reaches the average height of 15.1 m with the average diameter of 22.1 cm. The total stock of wood reaches 18, (ths m3), including (ths m3): young growth – 68 (ths m3); middleaged plantings – 14,871 (ths m3); maturing plantings – 2,187 (ths m3); mature and overmature plantings – 1,314 (ths m3). Aboveground phytomass in young growth is 20.2 t/ha; in mature and overmature plantings it is 391.2 t/ha. In the region it is estimated at 17,070 ths t, including (ths t): young growth – 64; middle-aged plantings – 13,753; maturing plantings – 2,032; mature and overmature plantings – 1,221. The share of stem mass reaches 84.5–80.8 %; woody greenery – 4.2–1.5 %; branches – 11.3–17.7 %. Recalculation coefficients of the stock into aboveground phytomass are the following for: young growth – 0.936; mature and overmature forest shelterbelts – 0.929. Phytosaturation of forest shelterbelts varies within 0.314–2.474 kg/m3. Forest shelterbelts have accumulated 8,534 ths t of carbon, which is estimated at 145.1 mln dollars. The sphere of application of the research results is the Krasnodar Krai forestry, which is recommended to create an additional 60 ths ha of forest shelterbelts, which will provide a normative protective forest cover of arable land of 5 % and annual carbon sequestration up to 3.4 t/ha.


2021 ◽  
Vol 492 ◽  
pp. 119194
Author(s):  
Marcin Klisz ◽  
Radosław Puchałka ◽  
Maksym Netsvetov ◽  
Yulia Prokopuk ◽  
Michaela Vítková ◽  
...  

2021 ◽  
Vol 301-302 ◽  
pp. 108344
Author(s):  
Jian Wang ◽  
Bojie Fu ◽  
Lei Jiao ◽  
Nan Lu ◽  
Jianye Li ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Zhaohui Jia ◽  
Miaojing Meng ◽  
Chong Li ◽  
Bo Zhang ◽  
Lu Zhai ◽  
...  

Anthropogenic overexploitation poses significant threats to the ecosystems that surround mining sites, which also have tremendous negative impacts on human health and society safety. The technological capacity of the ecological restoration of mine sites is imminent, however, it remains a challenge to sustain the green restorative effects of ecological reconstruction. As a promising and environmentally friendly method, the use of microbial technologies to improve existing ecological restoration strategies have shown to be effective. Nonetheless, research into the mechanisms and influences of rock-solubilizing microbial inoculums on plant growth is negligible and the lack of this knowledge inhibits the broader application of this technology. We compared the effects of rock-solubilizing microbial inoculums on two plant species. The results revealed that rock-solubilizing microbial inoculums significantly increased the number of nodules and the total nodule volume of Robinia pseudoacacia L. but not of Lespedeza bicolor Turcz. The reason of the opposite reactions is possibly because the growth of R. pseudoacacia was significantly correlated with nodule formation, whereas L. bicolor’s growth index was more closely related to soil characteristics and if soil nitrogen content was sufficient to support its growth. Further, we found that soil sucrase activity contributed the most to the height of R. pseudoacacia, and the total volume of root nodules contributed most to its ground diameter and leaf area. Differently, we found a high contribution of total soil carbon to seedling height and ground diameter of L. bicolor, and the soil phosphatase activity contributed the most to the L. bicolor’ s leaf area. Our work suggests that the addition of rock-solubilizing microbial inoculums can enhance the supply capacity of soil nutrients and the ability of plants to take up nutrients for the promotion of plant growth. Altogether, our study provides technical support for the practical application of rock-solubilizing microbes on bare rock in the future.


Sign in / Sign up

Export Citation Format

Share Document