Intercellular nuclear migration in cryofixed tobacco male meiocytes

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Sergey Mursalimov ◽  
Nobuhiko Ohno ◽  
Elena Deineko
Keyword(s):  
Genetics ◽  
1976 ◽  
Vol 82 (3) ◽  
pp. 423-428
Author(s):  
Celia Dubovoy

ABSTRACT Twelve mutations affecting nuclear migration, a major developmental phase in Schizophyllum commune, display a complex pattern of complementation and recombination. They are expressed only when a genetic factor controlling this phase of development, the B incompatibility factor, is operative. All twelve mutations are linked to the B factor, nine in a cluster and three in distinct loci outside the cluster. A linear map cannot be constructed from the frequency of recombination. Complementation maps are not linear. There is little correlation between the complementation groups and the groups based on recombination. Many pairs of mutations that do not complement recombine with frequencies of 1.1% to 26.9%. The genes represented by the twelve mutations are located in a linked group of about 18 known genes involved in the specific phase of development controlled by the B factor.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 101-116
Author(s):  
Vladimir P Efimov ◽  
N Ronald Morris

Abstract Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complete range of dynein function in A. nidulans, we searched for synthetic lethal mutations that significantly reduced growth in the absence of dynein but had little effect on their own. We isolated 19 sld (synthetic lethality without dynein) mutations in nine different genes. Mutations in two genes exacerbate the nuclear migration defect seen in the absence of dynein. Mutations in six other genes, including sldA and sldB, show a strong synthetic lethal interaction with a mutation in the mitotic kinesin bimC and, thus, are likely to play a role in mitosis. Mutations in sldA and sldB also confer hypersensitivity to the microtubule-destabilizing drug benomyl. sldA and sldB were cloned by complementation of their mutant phenotypes using an A. nidulans autonomously replicating vector. Sequencing revealed homology to the spindle assembly checkpoint genes BUB1 and BUB3 from Saccharomyces cerevisiae. Genetic interaction between dynein and spindle assembly checkpoint genes, as well as other mitotic genes, indicates that A. nidulans dynein plays a role in mitosis. We suggest a model for dynein motor action in A. nidulans that can explain dynein involvement in both mitosis and nuclear distribution.


2017 ◽  
Vol 58 (2) ◽  
pp. 62-70 ◽  
Author(s):  
Ryo Kaneda ◽  
Yuko Saeki ◽  
Dereje Getachew ◽  
Akihiro Matsumoto ◽  
Motohide Furuya ◽  
...  

Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 117-139
Author(s):  
W. J. D. Reeve ◽  
F. P. Kelly

The nuclei of preimplantation mouse embryos were identified after labelling with either DAPI or Hoechst 33258. During the 4- and 8-cell stages the peripherally located nuclei become clustered nearer the centre of the embryo. This nuclear migration towards the base of each cell was also observed during the development of couplets of 2/4 and 2/8 cells. Most blastomeres isolated from compact 8-cell embryos contained a nucleus located in their basal half away from the microvillous pole. The displacement may be critical for the generation of a range of sizes of blastomeres in the 16-cell embryo.


Sign in / Sign up

Export Citation Format

Share Document