Evolution of lithospheric mantle beneath the Maguan region, southwestern margin of the South China block based on mantle xenoliths in Miocene alkaline volcanic rocks

2021 ◽  
Vol 115 (2) ◽  
pp. 173-192
Author(s):  
Zhipeng Xie ◽  
Keiko Hattori ◽  
Rong Wang ◽  
Jian Wang ◽  
Jiao Qianqian ◽  
...  
2020 ◽  
pp. 1-16
Author(s):  
Jie Yang ◽  
Wei Liu ◽  
Zuozhen Han ◽  
Zuoxun Zeng ◽  
Le Wan ◽  
...  

Abstract The South China Block is one of the largest continental blocks located on the East Asian continent. The early Palaeozoic Wuyi–Yunkai orogen of the South China Block (known as the Caledonian orogen in Europe) is a major orogenic belt in East Asia and represents the first episode of extensive crustal reworking since Neoproterozoic time. Although this orogen is key to deciphering the formation and evolution of the South China Block, details about the orogen remain poorly defined. The Songshutang and Wushitou ultramafic–mafic units in southern Jiangxi Province, South China, have 206Pb–238U ages of c. 437 Ma, suggesting a Silurian formation age. All the Songshutang and Wushitou ultramafic–mafic rocks show relatively flat chondrite-normalized rare earth element patterns, depletions in Nb, Ta, Zr, Hf and Ti, and low ϵNd(t) values from −9.12 to −5.49 with negative zircon ϵHf(t) values from −10.84 to −2.58, resembling a typical arc magma affinity. Geochemical and isotopic data indicate that the newly identified ultramafic–mafic rocks, along with the reported Silurian mafic rocks in South China, possibly originated from the similar partial melting of an ancient subducted slab, fluid/sediment and metasomatized lithospheric mantle with varying degrees of fractional crystallization. In conjunction with other records of magmatism and metamorphism in South China, a late-orogenic extensional event led to the melting of the sub-continental lithospheric mantle in Silurian time and generated ultramafic–mafic rocks with a limited distribution along the Wuyi–Yunkai orogen and widespread late-orogenic granitic plutons in the South China Block.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wu Wei ◽  
Chuan-Zhou Liu ◽  
Ross N. Mitchell ◽  
Wen Yan

Triassic volcanic rocks, including basalts and dacites, were drilled from Meiji Atoll in the South China Sea (SCS), which represents a rifted slice from the active continental margin along the Cathaysia Block. In this study, we present apatite and whole rock geochemistry of Meiji dacites to decipher their petrogenesis. Apatite geochronology yielded U-Pb ages of 204–221 Ma, which are identical to zircon U-Pb ages within uncertainty and thus corroborate the formation of the Meiji volcanic rocks during the Late Triassic. Whole rock major elements suggest that Meiji dacites mainly belong to the high-K calc-alkaline series. They display enriched patterns in light rare earth elements (LREE) and flat patterns in heavy rare earth elements (HREE). They show enrichment in large-ion lithophile elements (LILE) and negative anomalies in Eu, Sr, P, Nb, Ta, and Ti. The dacites have initial 87Sr/86Sr ratios of 0.7094–0.7113, εNd(t) values of -5.9–-5.4 and εHf(t) values of -2.9–-1.7, whereas the apatite has relatively higher initial 87Sr/86Sr ratios (0.71289–0.71968) and similar εNd(t) (-8.13–-4.56) values. The dacites have homogeneous Pb isotopes, with initial 206Pb/204Pb of 18.73–18.87, 207Pb/204Pb of 15.75–15.80, and 208Pb/204Pb of 38.97–39.17. Modeling results suggest that Meiji dacites can be generated by <40% partial melting of amphibolites containing ∼10% garnet. Therefore, we propose that the Meiji dacites were produced by partial melting of the lower continental crust beneath the South China block, triggered by the underplating of mafic magmas as a response to Paleo-Pacific (Panthalassa) subduction during the Triassic. Meiji Atoll, together with other microblocks in the SCS, were rifted from the South China block and drifted southward due to continental extension and the opening of the SCS.


Lithos ◽  
2014 ◽  
Vol 210-211 ◽  
pp. 14-26 ◽  
Author(s):  
Xi-Yao Li ◽  
Jian-Ping Zheng ◽  
Min Sun ◽  
Shao-Kui Pan ◽  
Wei Wang ◽  
...  

Lithos ◽  
2021 ◽  
Vol 384-385 ◽  
pp. 105994
Author(s):  
Yanning Wang ◽  
Qingfei Wang ◽  
Jun Deng ◽  
Shengchao Xue ◽  
Chusi Li ◽  
...  

2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

2018 ◽  
Author(s):  
Kai Cao ◽  
Guocan Wang ◽  
Philippe Hervé Leloup ◽  
Wei Mahéo ◽  
Yadong Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document