scholarly journals Studies on the synthesis and stability of α-ketoacyl peptides

Amino Acids ◽  
2020 ◽  
Vol 52 (10) ◽  
pp. 1425-1438
Author(s):  
Johann Sajapin ◽  
Michael Hellwig

Abstract Oxidative stress, an excess of reactive oxygen species (ROS), may lead to oxidative post-translational modifications of proteins resulting in the cleavage of the peptide backbone, known as α-amidation, and formation of fragments such as peptide amides and α-ketoacyl peptides (α-KaP). In this study, we first compared different approaches for the synthesis of different model α-KaP and then investigated their stability compared to the corresponding unmodified peptides. The stability of peptides was studied at room temperature or at temperatures relevant for food processing (100 °C for cooking and 150 °C as a simulation of roasting) in water, in 1% (m/v) acetic acid or as the dry substance (to simulate the thermal treatment of dehydration processes) by HPLC analysis. Oxidation of peptides by 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) proved to be the most suited method for synthesis of α-KaPs. The acyl side chain of the carbonyl-terminal α-keto acid has a crucial impact on the stability of α-KaPs. This carbonyl group has a catalytic effect on the hydrolysis of the neighboring peptide bond, leading to the release of α-keto acids. Unmodified peptides were significantly more stable than the corresponding α-KaPs. The possibility of further degradation reactions was shown by the formation of Schiff bases from glyoxylic or pyruvic acids with glycine and proven through detection of transamination products and Strecker aldehydes of α-keto acids by HPLC–MS/MS. We propose here a mechanism for the decomposition of α-ketoacyl peptides.

2000 ◽  
Vol 65 (11) ◽  
pp. 1726-1736 ◽  
Author(s):  
Miroslav Ledvina ◽  
Radka Pavelová ◽  
Anna Rohlenová ◽  
Jan Ježek ◽  
David Šaman

Carba analogs of normuramic acid, i.e., 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid derivatives (nitrile or esters) 3a-3c were prepared by addition of radicals generated from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[(methylsulfanyl)thiocarbonyl]- (2a) or -3-O-(phenoxythiocarbonyl)-α-D-glucopyranoside (2b) with Bu3SnH to acrylonitrile or acryl esters. Alkaline hydrolysis of ethyl ester 3c afforded 3-(benzyl 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-α-D-glucopyranosid-3-yl)propanoic acid (5). Coupling of acid 5 with L-2-aminobutanoyl-D-isoglutamine benzyl ester trifluoroacetate and subsequent deprotection of the intermediate 6 furnished N-[3-(2-acetamido-2,3-dideoxy-α-D-glucopyranosid-3-yl)propanoyl]-L-2-aminobutanoyl-D-isoglutamine (7).


Synlett ◽  
2019 ◽  
Vol 30 (11) ◽  
pp. 1289-1302 ◽  
Author(s):  
Phil Servatius ◽  
Lukas Junk ◽  
Uli Kazmaier

Peptide modifications via C–C bond formation have emerged as valuable tools for the preparation and alteration of non-proteinogenic amino acids and the corresponding peptides. Modification of glycine subunits in peptides allows for the incorporation of unusual side chains, often in a highly stereoselective manner, orchestrated by the chiral peptide backbone. Moreover, modifications of peptides are not limited to the peptidic backbone. Many side-chain modifications, not only by variation of existing functional groups, but also by C–H functionalization, have been developed over the past decade. This account highlights the synthetic contributions made by our group and others to the field of peptide modifications and their application in natural product syntheses.1 Introduction2 Peptide Backbone Modifications via Peptide Enolates2.1 Chelate Enolate Claisen Rearrangements2.2 Allylic Alkylations2.3 Miscellaneous Modifications3 Side-Chain Modifications3.1 C–H Activation3.1.1 Functionalization via Csp3–H Bond Activation3.2.2 Functionalization via Csp2–H Bond Activation3.2 On Peptide Tryptophan Syntheses4 Conclusion


1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


2015 ◽  
Vol 1 (7) ◽  
pp. e1500263 ◽  
Author(s):  
Akihiko Nakamura ◽  
Takuya Ishida ◽  
Katsuhiro Kusaka ◽  
Taro Yamada ◽  
Shinya Fushinobu ◽  
...  

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the “Newton’s cradle”–like proton relay pathway of the catalytic cycle. Amide–imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.


2021 ◽  
Vol 14 (8) ◽  
pp. 733
Author(s):  
Julia Aresti-Sanz ◽  
Markus Schwalbe ◽  
Rob Rodrigues Pereira ◽  
Hjalmar Permentier ◽  
Sahar El Aidy

Methylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate. Nonetheless, very little is known about the factors that influence the drug’s absorption and bioavailability. Gut microbiota has been shown to reduce the bioavailability of a wide variety of orally administered drugs. Here, we tested the ability of small intestinal bacteria to metabolize methylphenidate. In silico analysis identified several small intestinal bacteria to harbor homologues of the human carboxylesterase 1 enzyme responsible for the hydrolysis of methylphenidate in the liver into the inactive form, ritalinic acid. Despite our initial results hinting towards possible bacterial hydrolysis of the drug, up to 60% of methylphenidate is spontaneously hydrolyzed in the absence of bacteria and this hydrolysis is pH-dependent. Overall, our results indicate that the stability of methylphenidate is compromised under certain pH conditions in the presence or absence of gut microbiota.


1988 ◽  
Vol 53 (11) ◽  
pp. 2810-2824 ◽  
Author(s):  
Ilmars Sekacis ◽  
Mark Shenderovich ◽  
Gregory Nikiforovich ◽  
Edvards Liepinš ◽  
Ludmila Polevaya ◽  
...  

A group of synthetic peptides including Boc-Lys-Phe-X-Y, X = Ala (I, III) or Thr (II), Y = Pro (I, II) or Ala (III) was studied by means of 1H NMR spectroscopy and theoretical conformational analysis. Compound I in DMSO shows two conformers with the trans- and cis-configuration of the peptide bond Ala-Pro. The salt bridge between the Lys ε-amino group and the C-terminal carboxyl is featured by magnetic nonequivalence of the Lys CεH2 protons. The space structure of I and II was found to possess a salt bridge fixed by an unusual turn in the chain formed by the Lys side chain and the C-terminal dipeptide with the trans-peptide bond X-Pro. Since a stable ionic bond in III and in the cis-conformer of I has not been observed, its contribution to stabilization of the space structure of the peptides in DMSO appears rather small.


Biopolymers ◽  
1970 ◽  
Vol 9 (7) ◽  
pp. 749-764 ◽  
Author(s):  
Sanford E. Ostroy ◽  
Noah Lotan ◽  
Richard T. Ingwall ◽  
Harold A. Scheraga

Sign in / Sign up

Export Citation Format

Share Document