Prediction of ship steering capabilities with a fully nonlinear ship motion model. Part 1: Maneuvering in calm water

2010 ◽  
Vol 15 (2) ◽  
pp. 131-142 ◽  
Author(s):  
Ray-Qing Lin ◽  
Michael Hughes ◽  
Tim Smith

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Ray-Qing Lin ◽  
Tim Smith ◽  
Michael Hughes

This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL). In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.





2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ray-Qing Lin ◽  
Weijia Kuang

This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL). In this paper we report our results on modeling ship maneuvering in arbitrary seaway that is one of the most challenging and important problems in seakeeping. In our modeling, we developed an adaptive algorithm to maintain dynamical balances numerically as the encounter frequencies (the wave frequencies as measured on the ship) varying with the ship maneuvering state. The key of this new algorithm is to evaluate the encounter frequency variation differently in the physical domain and in the frequency domain, thus effectively eliminating possible numerical dynamical imbalances. We have tested this algorithm with several well-documented maneuvering experiments, and our results agree very well with experimental data. In particular, the numerical time series of roll and pitch motions and the numerical ship tracks (i.e., surge, sway, and yaw) are nearly identical to those of experiments.



2007 ◽  
Vol 34 (13) ◽  
pp. 1863-1881 ◽  
Author(s):  
S.P. Singh ◽  
Debabrata Sen


1982 ◽  
Vol 104 (2) ◽  
pp. 158-165 ◽  
Author(s):  
R. E. Reid

The problem of definition of propulsion loss related to ship steering is addressed. Performance criteria representative of propulsion losses due to steering over a range of operating conditions including operation in calm water and a seaway are considered. Criteria are derived from strict analytical considerations and from empirical assumptions based on experimentally derived hydrodynamic data. The applicability of these various criteria and the implications for both assessment of relative performance of existing ship autopilots and for the design of new steering controllers is discussed in relation to simulation results for a high-speed containership.



2020 ◽  
Vol 28 (4) ◽  
pp. 106-123
Author(s):  
G.M. Dovgobrod ◽  

. The article presents an algorithm for controlling the motion of an insufficiently controlled ship along a trajectory with a continuous bounded curvature, based on the feedback linearization method. The algorithm allows restricting the control signal, while the state vector of the ship motion model does not approach the singularity point of the control law. The control algorithm returns the ship to the specified trajectory-attractor at any lateral deviation of the ship from the specified trajectory.





Kybernetes ◽  
2010 ◽  
Vol 39 (6) ◽  
pp. 871-880 ◽  
Author(s):  
Yongbing Chen ◽  
Yexin Song ◽  
Mianyun Chen


Author(s):  
Masakazu Taguchi ◽  
Masashi Kashiwagi

Abstract Nowadays, in maritime industries, container ships increase in size and they have large flares, which may induce nonlinear wave loads in large-amplitude waves. It is also well known that hydrodynamic forces acting on a ship and resulting ship motions show nonlinearities at some range of wave frequencies. Therefore, we should investigate not only correct estimation of wave loads and ship motions, but also nonlinear ship-motion characteristics in large-amplitude waves. However, it is not that clear which nonlinear hydrodynamic force terms are dominating for the nonlinearity in the ship motions. Although the linear equations of motion have been used, they should be modified to incorporate at least the most important nonlinear hydrodynamic forces and to establish a practical calculation method taking account of only the indispensable nonlinear terms. In this research, we did extensive experimental measurement of hydrodynamic forces and wave-induced ship motions, with which we aim to understand what are practically important nonlinear terms, and to derive practical nonlinear ship motion equations through numerical computation and comparison with experimental data.



Sign in / Sign up

Export Citation Format

Share Document