Parametric design and optimization of SWATH for reduced resistance based on evolutionary algorithm

Author(s):  
Guan Guan ◽  
Qu Yang ◽  
Yunlong Wang ◽  
Shuai Zhou ◽  
Zhengmao Zhuang
Author(s):  
Johan Malmqvist

Abstract This paper describes a system for parametric design and optimization of complex products. In the system, the use of knowledge-based and mathematical programming methods is combined. The motivation is that while knowledge-based methods are well suited for modeling products, they are insufficient when dealing with design problems that can be given an optimization formulation. This weakness was approached by including the information necessary for stating an optimization problem in the product models. A system optimization method can then be applied. The system also performs sensitivity analysis and has an interactive optimization module. The use of the system is illustrated by an example; the design and optimization of a two-speed gearbox.


2020 ◽  
Author(s):  
Chen-Yang Ji ◽  
Jin-Guo Liu ◽  
Chen-Chen Wu ◽  
Peng-Yuan Zhao ◽  
Ke-Li Chen

Abstract The Telescopic Tubular Mast (TTM) has excellent performance and is widely used in aerospace. Reasonable parameter design and optimization can shorten development cycle and improve performance for TTM. This paper designed a TTM driven by the bistable carbon reeled composite boom. The equivalent model of the TTM is established and simulated, which can be used as ex-tending structure for the solar sail. The work flow of the solar sail with the TTM is introduced. The natural frequency of the equivalent model and the segmented model is solved respectively using ABAQUS. The TTM under six different load conditions is analyzed. The influence of different factors on the vibration characteristics of the TTM is analyzed and the sensitivity analysis is carried out. Parameters including stiffness, natural frequency, mass and extension ratio are optimized using the multi-objective genetic optimization algorithm. According to the optimization results, the prototype was processed, and the experiment was completed with the equivalent load of solar sail. It provides a reference for the parametric design of the TTM.


2019 ◽  
Vol 55 (4) ◽  
pp. 3445-3452 ◽  
Author(s):  
Yawei Wang ◽  
Mattia Filippini ◽  
Giacomo Bacco ◽  
Nicola Bianchi

2013 ◽  
Vol 774-776 ◽  
pp. 168-171
Author(s):  
Qian Qian Wu ◽  
Rong Qiang Liu ◽  
Hong Hao Yue ◽  
Zong Quan Deng ◽  
Hong Wei Guo

Actuator based on Lorentz force exhibits excellent isolating performance with its non-contact characteristic, especially during frequency bandwidth below 5Hz. In this paper, mathematical model of the magnetic levitation actuator is constructed. In order to obtain better performance, parametric design of the structure of magnetic actuator is carried out and a multi-objective optimization method is proposed to maximize Lorentz force and minimize the mass of coil on the basis of genetic algorithm in the optimization process. A designing optimization program is developed, by which optimized parameters of magnetic actuator with maximal actuator force and minimal mass of coil can be identified to conduct experiment on ground. Compared with initial values in an instance, the optimized method is proven to be feasible and has the value of practical application.


Author(s):  
Xiongqi Peng ◽  
Purit Thanakijkasem ◽  
Xiaomin Zeng ◽  
Hongsheng Lu

Head impact with bonnet is one of the major causes for pedestrian severe injury or fatality in car accidents. This paper proposes a multidisciplinary design optimization method for bonnet inner based on pedestrian head protection along with bonnet stiffness requirement. A finite element (FE) model of a child headform impactor is developed and verified via simulation according to Global Technical Regulation No. 9 (GTR No. 9). Static stiffness analysis and headform collision simulation against one impact point for a particular bonnet are implemented. Parametric design and optimization analysis are carried out. Optimization solution significantly achieves a better head protection effect, which clearly affirms the feasibility of the proposed multidisciplinary optimization method and provides a reference approach to optimal design of engine bonnet inner.


2015 ◽  
Vol 17 (3) ◽  
pp. 605-630 ◽  
Author(s):  
S. B. Yao ◽  
D. L. Guo ◽  
Z. X. Sun ◽  
D. W. Chen ◽  
G. W. Yang

Sign in / Sign up

Export Citation Format

Share Document