Optimization in a Design System for Complex Products

Author(s):  
Johan Malmqvist

Abstract This paper describes a system for parametric design and optimization of complex products. In the system, the use of knowledge-based and mathematical programming methods is combined. The motivation is that while knowledge-based methods are well suited for modeling products, they are insufficient when dealing with design problems that can be given an optimization formulation. This weakness was approached by including the information necessary for stating an optimization problem in the product models. A system optimization method can then be applied. The system also performs sensitivity analysis and has an interactive optimization module. The use of the system is illustrated by an example; the design and optimization of a two-speed gearbox.

1993 ◽  
Vol 115 (1) ◽  
pp. 20-28 ◽  
Author(s):  
R. Ramaswamy ◽  
K. Ulrich ◽  
N. Kishi ◽  
M. Tomikashi

The solution of many design problems involves two steps: the designer (1) creates a configuration by making component choices and (2) selects values for the parameters associated with the components in that configuration. For example, in automobile design a configuration decision may be to use disk brakes and a single turbocharger. Consequently, the parametric values to be chosen include disk radius and turbo inlet area. Mathematical models used to represent such problems and to evaluate chosen alternatives are often large, nonlinear, and involve both discrete and continuous variables. Because no single design algorithm will usually suffice in solving such problems, currently available computer tools are typically limited to a small range of problems or to parts of large problems. We believe a computer environment that allows flexible access to a diverse set of tools can help designers rapidly generate high quality solutions to a broad range of problems. In this paper, we test this belief on a design problem taken from a commercial auto manufacturer. We propose a framework for dealing with the general class of problems, and we describe the implementation of a novel design system that integrates math programming with knowledge-based and graph theoretic tools.


Author(s):  
Johan Malmqvist

Abstract In this report a design system for parametric design of complex products is presented. The system is based on product models for complex products and components. These models were implemented as general framework models using the data base management system TORNADO. The user creates models for specific products by filling out forms. Consequently, all products can be represented in a uniform way. This gives the advantage that all service software (for storage in the product data base, retrieval of component data etc.) associated to a certain product model can be shared. The only lines of code the designer writes when creating a new component family are the design rules of the component. In association with the models a design system for complex products is presented. Benefitting from the uniform representations of the products, the system lets the user control the design process, while a system kernel handles the constraint management. The product models and the design system have been applied to hydraulic cylinder design.


Author(s):  
Rajan Ramaswamy ◽  
Karl T. Ulrich ◽  
Norimasa Kishi ◽  
Minoru Tomikashi

Abstract Many design tasks involve selection from a set of configurations followed by parametric optimization of the chosen configuration. The models used for these tasks tend to be large, non-linear and involve both discrete and continuous variables. It is rarely possible to use any single formal algorithm to solve these problems and as a result there are few tools to help designers solve such problems. We believe computer environments that allow flexible access to a varied set of tools will help designers rapidly generate high quality solutions. We demonstrate our arguments on a design problem taken from a commercial auto manufacturer, propose a framework for dealing with the general class of problems and describe an implementation of a novel design system that integrates math programming, knowledge-based and graph theoretic tools.


Author(s):  
Diane L. Peters ◽  
Panos Y. Papalambros ◽  
A. Galip Ulsoy

Optimization of smart products requires optimizing both the artifact design and its controller. The presence of coupling between the design and control problems is an important consideration in choosing the system optimization method. Several measures of coupling have been proposed based on different viewpoints of the system. In this paper, two measures of coupling, a vector based on optimality conditions and a matrix derived from an extension of the global sensitivity equations, are shown to be related under certain conditions and to be consistent in their coupling determination. The measures’ physical interpretation and relative ease of use are discussed using the example of a positioning gantry. A further relation is derived between one measure and a modified sequential formulation that would give results sufficiently close to the true solutions.


2007 ◽  
Vol 36 (7-8) ◽  
pp. 671-680 ◽  
Author(s):  
Bor-Tsuen Lin ◽  
Chian-Kun Chan ◽  
Jung-Ching Wang

2013 ◽  
Vol 774-776 ◽  
pp. 168-171
Author(s):  
Qian Qian Wu ◽  
Rong Qiang Liu ◽  
Hong Hao Yue ◽  
Zong Quan Deng ◽  
Hong Wei Guo

Actuator based on Lorentz force exhibits excellent isolating performance with its non-contact characteristic, especially during frequency bandwidth below 5Hz. In this paper, mathematical model of the magnetic levitation actuator is constructed. In order to obtain better performance, parametric design of the structure of magnetic actuator is carried out and a multi-objective optimization method is proposed to maximize Lorentz force and minimize the mass of coil on the basis of genetic algorithm in the optimization process. A designing optimization program is developed, by which optimized parameters of magnetic actuator with maximal actuator force and minimal mass of coil can be identified to conduct experiment on ground. Compared with initial values in an instance, the optimized method is proven to be feasible and has the value of practical application.


Author(s):  
Xiongqi Peng ◽  
Purit Thanakijkasem ◽  
Xiaomin Zeng ◽  
Hongsheng Lu

Head impact with bonnet is one of the major causes for pedestrian severe injury or fatality in car accidents. This paper proposes a multidisciplinary design optimization method for bonnet inner based on pedestrian head protection along with bonnet stiffness requirement. A finite element (FE) model of a child headform impactor is developed and verified via simulation according to Global Technical Regulation No. 9 (GTR No. 9). Static stiffness analysis and headform collision simulation against one impact point for a particular bonnet are implemented. Parametric design and optimization analysis are carried out. Optimization solution significantly achieves a better head protection effect, which clearly affirms the feasibility of the proposed multidisciplinary optimization method and provides a reference approach to optimal design of engine bonnet inner.


Author(s):  
William M. McVea ◽  
Kamyar Haghighi

Abstract Research has been conducted in the areas of design methodology, automation and use of knowledge based systems as a tool to improve the design efficiency, accuracy and consistency for mechanical power transmissions. The research capitalized on previous work related to component level design synthesis and analysis. The next logical step in the research progression was to look into system development and integration of design synthesis and analysis tools. Deliverables from this research include new knowledge acquisition techniques, a more complete model of design information flow and development and a knowledge based design assistant system, capable of integrating multiple discrete and disparate design tools.


2013 ◽  
Vol 834-836 ◽  
pp. 1432-1435
Author(s):  
Yu Yang

Traditional agricultural machinery design methods usually go through longer-design cycle and can hardly make good use of existing knowledge and experience. In view of this problem, parametric design theory and knowledge-based engineering were applied to the disc-scoop-type metering device designed to improve the design experience and reuse design knowledge. Through the knowledge-based parametric design method, the design framework model of disc-scoop-type metering device was put forward. The knowledge library on the basis of design rules and characteristic similarity-based case library were created, and disc-scoop-type metering device parametric design system based on knowledge had been developed on the platform of Pro/Engineering. The rapid design for knowledge-driven model of disc-scoop-type metering device was realized. The specific design examples clearly indicated that the establishment of the system considerately improved the quality and efficiency of the design.


Author(s):  
El-Sayed Aziz ◽  
C. Chassapis

Forging sequence design is mainly carried out using empirical rules for the design of the intermediate die shapes, in addition to many trail-and-error runs resulting in prolonged development times and higher costs. An integrated optimal design of preform shapes and process conditions approach to minimize the energy required is essential. The research presented in this article aims at developing an optimization algorithm to determine the optimum intermediate die shape-designs that minimize the total energy required during the forging process sequence. It is based on the results obtained in the previous research with focus on knowledge base and database representation to design precision forging solid gears and provide detailed process specification. A three-step algorithm, which addresses gear construction design, manufacturability analysis of gear construction and die-design optimization, is used to generate the parametric gear model and automatically extract design information for manufacturing process planning based on the feature-based parametric design system. Utilization of the shape optimization method for preform stages avoids costly production problems. The optimized approach provides accurate description of all stages involved in the forging process. Forging load and energy required, along with metal flow and detailed geometry specification of die forms for every forging stage are obtained. The forging energy requirements based on this approach are as much as 25% lower than those arrived from die designs based on actual tooth profile geometry.


Sign in / Sign up

Export Citation Format

Share Document