Dynamic Analysis and Parametric Optimization of Telescopic Tubular Mast Applied on Solar Sail

Author(s):  
Chen-Yang Ji ◽  
Jin-Guo Liu ◽  
Chen-Chen Wu ◽  
Peng-Yuan Zhao ◽  
Ke-Li Chen

Abstract The Telescopic Tubular Mast (TTM) has excellent performance and is widely used in aerospace. Reasonable parameter design and optimization can shorten development cycle and improve performance for TTM. This paper designed a TTM driven by the bistable carbon reeled composite boom. The equivalent model of the TTM is established and simulated, which can be used as ex-tending structure for the solar sail. The work flow of the solar sail with the TTM is introduced. The natural frequency of the equivalent model and the segmented model is solved respectively using ABAQUS. The TTM under six different load conditions is analyzed. The influence of different factors on the vibration characteristics of the TTM is analyzed and the sensitivity analysis is carried out. Parameters including stiffness, natural frequency, mass and extension ratio are optimized using the multi-objective genetic optimization algorithm. According to the optimization results, the prototype was processed, and the experiment was completed with the equivalent load of solar sail. It provides a reference for the parametric design of the TTM.

Author(s):  
Ashish Bawkar

This work aims towards the design and optimization of the drive shaft as there is increasing demand for weight reduction in an automobile vehicle. The drive shaft is basically a torque transmitting element which transmit the torque from the differential gearbox to the respective wheels. In general, the drive shafts are subjected to fluctuating loads as the torque requirement changes according to the road conditions. Due to this, the drive shaft should be designed considering fatigue failure. The Maruti Suzuki Ertiga model is chosen for design and optimization of the drive shaft. For the fatigue life predicting of the drive shaft, the S-N curve approach is used. Furthermore, the inner diameter of the shaft is varied to obtain the optimized diameter of a hollow shaft which can withstand these fluctuating loads without failure. Along with fatigue life prediction, the natural frequency of the hollow shaft is also calculated. Furthermore, the parametric analysis is carried out of fatigue FOS, Von mises stress, weight and natural frequency of the shaft by varying the diameter ratio of the hollow shaft, and the nature of variation of these parameters are plotted in their respective graphs. The design is validated by performing FEA analysis for each case of a hollow shaft using Ansys software. Finally, from the FEA analysis we conclude that the optimized dimensions of the hollow drive shaft are safe.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Biao Liu ◽  
Yali Ma ◽  
Delun Wang ◽  
Shaoping Bai ◽  
Yangyang Li ◽  
...  

A novel method for designing a seven-bar linkage based on the optimization of centrodes is presented in this paper. The proposed method is applied to the design of a pure-rolling cutting mechanism, wherein close interrelation between the contacting lines and centrodes of two pure-rolling bodies is formulated and the genetic optimization algorithm is adopted for the dimensional synthesis of the mechanism. The optimization is conducted to minimize the error between mechanism centrodes and the expected trajectories, subject to the design requirements of the opening distance, the maximum amount of overlap error, and peak value of shearing force. An optimal solution is obtained and the analysis results show that the horizontal slipping and standard deviation of the lowest moving points of the upper shear blade have been reduced by 78.0% and 80.1% and the peak value of shear stress decreases by 29%, which indicate better cutting performance and long service life.


Author(s):  
Johan Malmqvist

Abstract This paper describes a system for parametric design and optimization of complex products. In the system, the use of knowledge-based and mathematical programming methods is combined. The motivation is that while knowledge-based methods are well suited for modeling products, they are insufficient when dealing with design problems that can be given an optimization formulation. This weakness was approached by including the information necessary for stating an optimization problem in the product models. A system optimization method can then be applied. The system also performs sensitivity analysis and has an interactive optimization module. The use of the system is illustrated by an example; the design and optimization of a two-speed gearbox.


Sign in / Sign up

Export Citation Format

Share Document