scholarly journals Role of c-Fos in orthodontic tooth movement: an in vivo study using transgenic mice

Author(s):  
Maximilian G. Decker ◽  
Cita Nottmeier ◽  
Julia Luther ◽  
Anke Baranowsky ◽  
Bärbel Kahl-Nieke ◽  
...  
Author(s):  
Birgit Rath-Deschner ◽  
Andressa V. B. Nogueira ◽  
Svenja Beisel-Memmert ◽  
Marjan Nokhbehsaim ◽  
Sigrun Eick ◽  
...  

Abstract Objectives The aim of this in vitro and in vivo study was to investigate the interaction of periodontitis and orthodontic tooth movement on interleukin (IL)-6 and C-X-C motif chemokine 2 (CXCL2). Materials and methods The effect of periodontitis and/or orthodontic tooth movement (OTM) on alveolar bone and gingival IL-6 and CXCL2 expressions was studied in rats by histology and RT-PCR, respectively. The animals were assigned to four groups (control, periodontitis, OTM, and combination of periodontitis and OTM). The IL-6 and CXCL2 levels were also studied in human gingival biopsies from periodontally healthy and periodontitis subjects by RT-PCR and immunohistochemistry. Additionally, the synthesis of IL-6 and CXCL2 in response to the periodontopathogen Fusobacterium nucleatum and/or mechanical strain was studied in periodontal fibroblasts by RT-PCR and ELISA. Results Periodontitis caused an increase in gingival levels of IL-6 and CXCL2 in the animal model. Moreover, orthodontic tooth movement further enhanced the bacteria-induced periodontal destruction and gingival IL-6 gene expression. Elevated IL-6 and CXCL2 gingival levels were also found in human periodontitis. Furthermore, mechanical strain increased the stimulatory effect of F. nucleatum on IL-6 protein in vitro. Conclusions Our study suggests that orthodontic tooth movement can enhance bacteria-induced periodontal inflammation and thus destruction and that IL-6 may play a pivotal role in this process. Clinical relevance Orthodontic tooth movement should only be performed after periodontal therapy. In case of periodontitis relapse, orthodontic therapy should be suspended until the periodontal inflammation has been successfully treated and thus the periodontal disease is controlled again.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Carl T. Drake ◽  
Susan P. McGorray ◽  
Calogero Dolce ◽  
Madhu Nair ◽  
Timothy T. Wheeler

Clear aligners provide a convenient model to measure orthodontic tooth movement (OTM). We examined the role of in vivo aligner material fatigue and subject-specific factors in tooth movement. Fifteen subjects seeking orthodontic treatment at the University of Florida were enrolled. Results were compared with data previously collected from 37 subjects enrolled in a similar protocol. Subjects were followed prospectively for eight weeks. An upper central incisor was programmed to move 0.5 mm. every two weeks using clear aligners. A duplicate aligner was provided for the second week of each cycle. Weekly polyvinyl siloxane (PVS) impressions were taken, and digital models were fabricated to measure OTM. Initial and final cone beam computed tomography (CBCT) images were obtained to characterize OTM. Results were compared to data from a similar protocol, where subjects received a new aligner biweekly. No significant difference was found in the amount of OTM between the two groups, with mean total OTM of 1.11 mm. (standard deviation (SD) 0.30) and 1.07 mm. (SD 0.33) for the weekly aligner and biweekly control groups, respectively (P=0.72). Over eight weeks, in two-week intervals, material fatigue does not play a significant role in the rate or amount of tooth movement.


Author(s):  
Nirali Rathod ◽  
SonaliVijay Deshmukh ◽  
Sanket Agarkar ◽  
Lakshmi Shetty ◽  
Sandeep Jethe ◽  
...  

2021 ◽  
pp. 002203452098477
Author(s):  
S. Wald ◽  
A. Leibowitz ◽  
Y. Aizenbud ◽  
Y. Saba ◽  
K. Zubeidat ◽  
...  

Sustained mechanical forces applied to tissue are known to shape local immunity. In the oral mucosa, mechanical stress, either naturally induced by masticatory forces or externally via mechanical loading during orthodontic tooth movement (OTM), is translated, in part, by T cells to alveolar bone resorption. Nevertheless, despite being considered critical for OTM, depletion of CD4+ and CD8+ T cells is reported to have no impact on tooth movement, thus questioning the function of αβT cells in OTM-associated bone resorption. To further address the role of T cells in OTM, we first characterized the leukocytes residing in the periodontal ligament (PDL), the tissue of interest during OTM, and compared it to the neighboring gingiva. Unlike the gingiva, monocytes and neutrophils represent the major leukocytes of the PDL. These myeloid cells were also the main leukocytes in the PDL of germ-free mice, although at lower levels than SPF mice. T lymphocytes were more enriched in the gingiva than the PDL, yet in both tissues, the relative fraction of the γδT cells was higher than the αβ T cells. We thus sought to examine the role of γδT cells in OTM. γδT cells residing in the PDL were mainly Vγ6+ and produced interleukin (IL)–17A but not interferon-γ. Using Tcrd-GDL mice allowing conditional ablation of γδT cells in vivo, we demonstrate that OTM was greatly diminished in the absence of γδT cells. Further analysis revealed that ablation of γδT cells decreased early IL-17A expression, monocyte and neutrophil recruitment, and the expression of the osteoclastogenic molecule receptor activator of nuclear factor–κβ ligand. This, eventually, resulted in reduced numbers of osteoclasts in the pressure site during OTM. Collectively, our data suggest that γδT cells are essential in OTM for translating orthodontic mechanical forces to bone resorption, required for relocating the tooth in the alveolar bone.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


Sign in / Sign up

Export Citation Format

Share Document