Cytokine Expression Pattern and Protein-Protein interaction network analysis of Leucocyte Rich Platelet Rich Fibrin and Injectable Form of Platelet Rich Fibrin

Author(s):  
Sharmila Jasmine ◽  
Annamalai Thangavelu ◽  
Rajapandiyan Krishnamoorthy ◽  
Mohammed A. Alshuniaber ◽  
Ali A. Alshatwi
2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

2020 ◽  
Author(s):  
Si Xu ◽  
Xiaoning Li ◽  
Sha Wu ◽  
Min Yang

Abstract Background: To provide theoretical basis for the molecular mechanism of the development of diabetic nephropathy and targeted molecular therapy by screening expressed genes based on bioinformatic analysis. Methods: We analyzed diabetic nephropathy microarray datasets derived from GEO database. Perl and R programming packages were used for data processing and analysis and for drawing. STRING online database and Cytoscape software were utilized for protein-protein interaction network analysis and screened for hub genes. Also, WebGestalt was used to analyze the relationship between genes and microRNAs. Nephroseq online tool was used to visualize the correlation between genes and clinical properties.Results: We found 91 differentially expressed genes between diabetic nephropathy tissues and normal control tissues. Protein-protein interaction network analysis screened out 5 key modules and a total of 14 hub genes were identified by integration, also11 microRNAs were associated with hub genes. Especially mir29 could regulate COL6A3 and COL15A1.Conclusions: The internal biological information in diabetic nephropathy can be revealed by integrative bioinformatical analysis, providing theoretical basis for further research on molecular mechanism and potential targets for diagnosis and therapeutics of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document