scholarly journals Diabetic Retinopathy and Laser Therapy in Rats: A Protein-Protein Interaction Network Analysis

2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  
2016 ◽  
Vol 24 (01) ◽  
pp. 117-127 ◽  
Author(s):  
S. UMADEVI ◽  
K. PREMKUMAR ◽  
S. VALARMATHI ◽  
P. M. AYYASAMY ◽  
S. RAJAKUMAR

Diabetic retinopathy is the most common cause of blindness, associated with many biochemical pathways mediated by several genes and proteins. Disease gene identification can be achieved through several approaches but still it is a challenging task. This study, aimed to find out the novel genes associated with diabetic retinopathy. In this study, all the well-known genes associated with diabetic retinopathy were collected from databases and the protein interaction partners were identified. The interacting candidate genes were chosen by chromosomal locations, sharing with disease genes. The protein–protein interaction network was constructed and the key nodes (genes) were identified by degree, betweenness centrality, closeness centrality and eccentricity centrality. Further, the ontological terms, molecular function, biological process and cellular components were related with that of the disease genes with p-value [Formula: see text]. The genes UBC, FOS, ITGB1, FOXA2, CCND1, FOSL1, RXRA and NCAM1 were identified as potential genes associated with diabetic retinopathy. The molecular functions of these genes include protein binding, receptor activity, receptor binding, oxidoreductase activity, protein kinase activity, serine-type peptidase activity and growth factor. Many of the identified genes were clinically related as evidence by the literature.


2020 ◽  
Author(s):  
Si Xu ◽  
Xiaoning Li ◽  
Sha Wu ◽  
Min Yang

Abstract Background: To provide theoretical basis for the molecular mechanism of the development of diabetic nephropathy and targeted molecular therapy by screening expressed genes based on bioinformatic analysis. Methods: We analyzed diabetic nephropathy microarray datasets derived from GEO database. Perl and R programming packages were used for data processing and analysis and for drawing. STRING online database and Cytoscape software were utilized for protein-protein interaction network analysis and screened for hub genes. Also, WebGestalt was used to analyze the relationship between genes and microRNAs. Nephroseq online tool was used to visualize the correlation between genes and clinical properties.Results: We found 91 differentially expressed genes between diabetic nephropathy tissues and normal control tissues. Protein-protein interaction network analysis screened out 5 key modules and a total of 14 hub genes were identified by integration, also11 microRNAs were associated with hub genes. Especially mir29 could regulate COL6A3 and COL15A1.Conclusions: The internal biological information in diabetic nephropathy can be revealed by integrative bioinformatical analysis, providing theoretical basis for further research on molecular mechanism and potential targets for diagnosis and therapeutics of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document