X-ray Photoelectron Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectroscopy studies of electrodeposited molybdenum oxysulfide cathodes for lithium and lithium-ion microbatteries

2007 ◽  
Vol 12 (3) ◽  
pp. 273-285 ◽  
Author(s):  
V. Yufit ◽  
D. Golodnitsky ◽  
L. Burstein ◽  
M. Nathan ◽  
E. Peled
Shinku ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 295-298 ◽  
Author(s):  
Wen Biao YING ◽  
Yusuke MIZOKAWA ◽  
Yoshitomo KAMIURA ◽  
Yong Bing YU ◽  
Masafumi NISHIMATSU ◽  
...  

Author(s):  
Cheng-Kai ChiuHuang ◽  
Chuanzhen Zhou ◽  
Hsiao-Ying Shadow Huang

For high rate-capability and low cost lithium-ion batteries, the prevention of capacity loss is one of major challenges facing by lithium-ion batteries today. During electrochemical processes, lithium ions diffuse from and insert into battery electrodes accompanied with the phase transformation, where ionic diffusivity and concentration are keys to the resultant battery capacity. In the current study, we first compare voltage vs. capacity curves at different C-rates (1C, 2C, 6C, 10C). Second, lithium-ion distributions and intensity are quantified via the Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The result shows that voltage vs. capacity relations are C-rate dependent and larger hystereses are observed in the higher C-rate samples. Detailed quantification of lithium-ion intensity for the 1C sample is conducted. It is observed that lithium-ions are distributed uniformly inside the electrode. Therefore, the current study provides a qualitative and quantitative data to better understand C-rate dependent phenomenon of LiFePO4 battery cells.


Sign in / Sign up

Export Citation Format

Share Document