Multi-scale Drivers of Spatial Variation in Old-Growth Forest Carbon Density Disentangled with Lidar and an Individual-Based Landscape Model

Ecosystems ◽  
2012 ◽  
Vol 15 (8) ◽  
pp. 1321-1335 ◽  
Author(s):  
Rupert Seidl ◽  
Thomas A. Spies ◽  
Werner Rammer ◽  
E. Ashley Steel ◽  
Robert J. Pabst ◽  
...  
Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. E21-E23
Author(s):  
Per Gundersen ◽  
Emil E. Thybring ◽  
Thomas Nord-Larsen ◽  
Lars Vesterdal ◽  
Knute J. Nadelhoffer ◽  
...  

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. E24-E25
Author(s):  
Sebastiaan Luyssaert ◽  
E.-Detlef Schulze ◽  
Alexander Knohl ◽  
Beverly E. Law ◽  
Philippe Ciais ◽  
...  

2017 ◽  
Vol 7 (1-2) ◽  
pp. 73-107
Author(s):  
Orsolya Perger ◽  
Curtis Rollins ◽  
Marian Weber ◽  
Wiktor Adamowicz ◽  
Peter Boxall

2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


Author(s):  
Li Dai ◽  
Yufang Zhang ◽  
Lei Wang ◽  
Shuanli Zheng ◽  
Wenqiang Xu

The natural mountain forests in northwest China are recognized as a substantial carbon pool and play an important role in local fragile ecosystems. This study used inventory data and detailed field measurements covering different forest age groups (young, middle-aged, near-mature, mature, old-growth forest), structure of forest (tree, herb, litter and soil layer) and trees (leaves, branches, trunks and root) to estimate biomass, carbon content ratio, carbon density and carbon storage in Altai forest ecosystems. The results showed that the average biomass of the Altai Mountains forest ecosystems was 126.67 t·hm−2, and the descending order of the value was tree layer (120.84 t·hm−2) > herb layer (4.22 t·hm−2) > litter layer (1.61 t·hm−2). Among the tree parts, trunks, roots, leaves and branches accounted for 50%, 22%, 16% and 12% of the total tree biomass, respectively. The average carbon content ratio was 0.49 (range: 0.41–0.52). The average carbon density of forest ecosystems was 205.72 t·hm−2, and the carbon storage of the forest ecosystems was 131.35 Tg (standard deviation: 31.01) inside study area. Soil had the highest carbon storage (65.98%), followed by tree (32.81%), herb (0.78%) and litter (0.43%) layers. Forest age has significant effect on biomass, carbon content ratio, carbon density and carbon storage. The carbon density of forest ecosystems in study area was spatially distributed higher in the south and lower in north, which is influenced by climate, topography, soil types and dominant tree species.


Sign in / Sign up

Export Citation Format

Share Document