scholarly journals Assessment of Carbon Density in Natural Mountain Forest Ecosystems at Northwest China

Author(s):  
Li Dai ◽  
Yufang Zhang ◽  
Lei Wang ◽  
Shuanli Zheng ◽  
Wenqiang Xu

The natural mountain forests in northwest China are recognized as a substantial carbon pool and play an important role in local fragile ecosystems. This study used inventory data and detailed field measurements covering different forest age groups (young, middle-aged, near-mature, mature, old-growth forest), structure of forest (tree, herb, litter and soil layer) and trees (leaves, branches, trunks and root) to estimate biomass, carbon content ratio, carbon density and carbon storage in Altai forest ecosystems. The results showed that the average biomass of the Altai Mountains forest ecosystems was 126.67 t·hm−2, and the descending order of the value was tree layer (120.84 t·hm−2) > herb layer (4.22 t·hm−2) > litter layer (1.61 t·hm−2). Among the tree parts, trunks, roots, leaves and branches accounted for 50%, 22%, 16% and 12% of the total tree biomass, respectively. The average carbon content ratio was 0.49 (range: 0.41–0.52). The average carbon density of forest ecosystems was 205.72 t·hm−2, and the carbon storage of the forest ecosystems was 131.35 Tg (standard deviation: 31.01) inside study area. Soil had the highest carbon storage (65.98%), followed by tree (32.81%), herb (0.78%) and litter (0.43%) layers. Forest age has significant effect on biomass, carbon content ratio, carbon density and carbon storage. The carbon density of forest ecosystems in study area was spatially distributed higher in the south and lower in north, which is influenced by climate, topography, soil types and dominant tree species.

2018 ◽  
Vol 23 (6) ◽  
pp. 354-362 ◽  
Author(s):  
Jun-Wei Yue ◽  
Jin-Hong Guan ◽  
Mei-Jie Yan ◽  
Jian-Guo Zhang ◽  
Lei Deng ◽  
...  

2021 ◽  
Author(s):  
Junqia Kong ◽  
Zhibin He ◽  
Rong Yang ◽  
Longfei Chen ◽  
Jun Du

Abstract Background: The Northwest China has experienced dramatic changes in agricultural land area in recent years; the effects of these changes on carbon storage are unknown and cannot guide further land development policies related to carbon emissions. In this study, we evaluated the effects of cropland changes (reclamation and transfer) during 1995-2015 on carbon storage in Northwest China by using land use data, carbon density data, and statistical yearbooks with the Intergovernmental Panel on Climate Change (IPCC) method. Results: The results indicated that the area of cropland increased by 1.48×106 ha from 1995 to 2005, resulting in a total carbon sequestration of 12.46 Tg, in which conversion of cropland to forest (11.16 Tg) and other land to cropland (8.92 Tg) were the main sources of the increase in carbon storage. Specifically, regional carbon sequestration due to cropland changes exhibited an increasing trend during 1995-2002 (dominated by cropland transfer), a gradually decreasing trend during 2002-2009 (dominated by cropland reclamation), and stabilization since then (during 2009-2015). Conclusions: These results suggest that the development of high carbon density lands or the conversion of low carbon density lands are critical to increasing future carbon sequestration due to cropland change. We used a novel approach of combining land use data, carbon density data, and statistical yearbooks to assess the impact of cropland change on carbon storage; this method is promising in applications which guide agricultural land-use management.


2021 ◽  
Vol 248 ◽  
pp. 02044
Author(s):  
Qiugen Zhang ◽  
Hongli Wang ◽  
Yuan Ding ◽  
Jian Li

Three typical substropical evergreen broad-leaved forests (Castanopsis eyrei, Schima superba and Cyclobalanopsis glauca) in Wuyi Mountain National Nature Reserve of Jiangxi Province were selected to investigate its carbon sequestration capacity. The biomass and soil bulk density of sample investigation were get by setting sample investigation, field quadrat sampling, indoor sample making, experimental analysis testing, data statistics and analysis. The organic carbon content of vegetation layer (arbor layer, shrub layer and herbaceous layer, litter layer) and soil layer (0-10cm, 10-20cm, 20-30cm, 30-50cm and 50-100cm) were also get. The carbon density and carbon storage of subtropical evergreen broad-leaved forests vegetation and soil were estimated which including Castanopsis eyrei, Schima superba and Cyclobalanopsis glauca. The investigation results had shown that: The average organic carbon content of each vegetation layer in the investigation plot (400 m2) of Wuyi Mountain National Nature Reserve was arbor layer (54.07%)> shrub layer (52.8%)> herbaceous layer (47.5%), in which the average organic carbon content of the three subtropical evergreen broad-leaved forests in the arbor layer was close 52.97% to 54.87% and the total average content was 54.07%. The average carbon density of the forest vegetation layer was 178.3587t/hm2, the average carbon density of the vegetation layer was arbor layer (176.0273t/hm2)> shrub layer (1.3043t/hm2)> litter layer (0.8144t/hm2)> herbaceous layer (0.2127t/hm2); the average carbon density of each forest species was Castanopsis eyrei (213.5141t/hm2)> Schima superba (168.9069t/hm2)> Cyclobalanopsis glauca (152.6551t/hm2). Investigation sample of subtropical evergreen broad-leaved forest (400 m) in Wuyi Mountain National Nature Reserve, Jiangxi Province2 The average soil bulk density of each soil layer cm 0-100 g/cm was 0.868-1.816 g/cm3 both soil organic carbon content and soil carbon density decreased with the increase of soil depth. The average organic carbon content of each soil layer was between 3.75% and 12.48%, and the average soil carbon density was between 62.85t/hm2 and 146.14t/hm2. The average total carbon density of the soil in the investigated sample plots was 754.77t/hm2, of which the average soil carbon density in investigation sample plots in Castanopsis eyrei, Schima superba and Cyclobalanopsis glauca was 911.49t/hm2, 762.56t/hm2 and 543.22t/hm2 respectively. The average carbon storage of the investigation sample plot (400m2) in Jiangxi Wuyi Mountain National Nature Reserve were Castanopsis eyrei forest (45.0002t) >Cyclobalanopsis glauca forest (36.6087t) > Schima superba forest (28.4850t), the average soil carbon storage(30.1908t) was 4.23 times the average carbon storage(7.1314t).


2014 ◽  
Vol 1010-1012 ◽  
pp. 1194-1197
Author(s):  
Qiu Gen Zhang ◽  
Shi Fen Wang ◽  
Jing Yi Wu ◽  
Su Hua Chen

Organic carbon of forest ecosystems is an essential part of the global organic carbon, which plays a dominate role in forest soil organic carbon research. It was estimated that the forest soil organic carbon density, carbon storage and its abundance index of 11 cities in Jiangxi province according to soil survey data for the second time and forest resources survey data in Jiangxi province during 11th five-year plan. Results showed that organic carbon storage of forest soil in 0-20cm and 0-100cm in Jiangxi province was 401.04×106t and 1025.73×106t respectively, in which yellow soil organic carbon density was higher than that of the red soil. Soil organic carbon storage in forest ecosystems was consistent in 0-20cm and 0-100cm of forest soil in eleven cities of Jiangxi province, among them Ganzhou was the highest in Ra20 while Yichun was the lowest one. In addition, it was inconsistent in the abundance index trend of forest soil organic carbon storages, Shangrao was the highest in Ra20, Yichun was the highest in Ra100, while Nanchang was the lowest one both in Ra20 and Ra100. It was the inverse relationship between total GDP and forest soil organic carbon storage..


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2015 ◽  
Vol 12 (22) ◽  
pp. 6751-6760 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg−1 vs. 281.8 mg kg−1) and Nmic (82.6 mg kg−1 vs. 39.0 mg kg−1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.


2020 ◽  

<p>Purpose: To research the influence of different densities of Platycladus orientalis plantation on the allocation characteristics of carbon storage in the ecosystem, the density regulation experiment on the Pinus massoniana plantation with different densities was carried out to discuss the change of the carbon storage of the ecosystem. Method: The density regulation experiment was carried out using random block design along contour line. Through the estimation of tree layer biomass of single Pinus massoniana, the determination of the carbon storage in the tree layer of Pinus massoniana, the estimation of the understory shrub, the grass layer, and the wood layer, the determination of carbon storage in vegetation and litter layer under forest, the determination of organic carbon content and carbon storage in the sample, and the carbon storage of the plantation ecosystem of different stand density sample plots, the effects of stand density on biomass and carbon storage of Pinus massoniana plantation were analyzed. Results: The results of average carbon storage per unit area of Pinus massoniana plantation was different stand densities are 94.11 t/tm2 (1679 plants t/hm2), 79.06 t/tm2 (2250 plants / hm2), 73.32 t/tm2 (2800 plants / hm2). With the increase of stand density, the proportion of carbon storage in Pinus massoniana plantation decreased. This is because the larger the stand density, the more trees with small and medium diameter are grown in the Pinus massoniana plantation. The average diameter at breast height of the stand is very small, and the biomass of single tree decreases. The density is most beneficial to the improvement of the carbon storage of the tree layer. Conclusions: Density regulation promotes the accumulation of carbon storage of the Pinus massoniana plantation and increases the carbon storage of understory vegetation, litter, and soil layer.</p>


Sign in / Sign up

Export Citation Format

Share Document