Belowground Primary Production by Carbon Isotope Decay and Long-term Root Biomass Dynamics

Ecosystems ◽  
2001 ◽  
Vol 4 (2) ◽  
pp. 139-150 ◽  
Author(s):  
D. G. Milchunas ◽  
W. K. Lauenroth
2006 ◽  
Vol 234 ◽  
pp. S195 ◽  
Author(s):  
Aydın Tüfekçioğlu ◽  
Mehmet Küçük ◽  
Bülent Sağlam ◽  
Ertuğrul Bilgili ◽  
Lokman Altun ◽  
...  

Author(s):  
Euan D. Reavie ◽  
Meijun Cai ◽  
Carsten Meyer-Jacob ◽  
John P. Smol ◽  
Josef P. Werne

2016 ◽  
Vol 128 (11-12) ◽  
pp. 1725-1735 ◽  
Author(s):  
Francesca Falzoni ◽  
Maria Rose Petrizzo ◽  
Leon J. Clarke ◽  
Kenneth G. MacLeod ◽  
Hugh C. Jenkyns

Oecologia ◽  
2014 ◽  
Vol 177 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Lorenzo Menichetti ◽  
Sabine Houot ◽  
Folkert van Oort ◽  
Thomas Kätterer ◽  
Bent T. Christensen ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 2595-2621 ◽  
Author(s):  
T. M. Hill ◽  
C. R. Myrvold ◽  
H. J. Spero ◽  
T. P. Guilderson

Abstract. Deep-sea bamboo corals (order Gorgonacea, family Isididae) are known to record changes in water mass chemistry over decades to centuries. These corals are composed of a two-part skeleton of calcite internodes segmented by gorgonin organic nodes. We examine the spatial variability of bamboo coral organic node 13C/12C and 15N/14N from thirteen bamboo coral specimens sampled along the California margin (37–32° N; 792 to 2136 m depth). Radiocarbon analyses of the organic nodes show the presence of the anthropogenic bomb spike, indicating the corals utilize a surface-derived food source (pre-bomb D14C values of ∼ −100‰, post-bomb values to 82‰). Carbon and nitrogen isotope data from the organic nodes (13C = −15.9‰ to −19.2‰ 15N = 13.8‰ to 19.4‰) suggest selective feeding on surface-derived organic matter or zooplankton. A strong relationship between coral 15N and habitat depth indicate a potential archive of changing carbon export, with decreased 15N values reflecting reduced microbial degradation (increased carbon flux) at shallower depths. Using four multi-centennial length coral records, we interpret long-term 15N stability in the California Current. Organic node 13C values record differences in carbon isotope fractionation dictated by nearshore vs. offshore primary production. These findings imply strong coupling between primary production, pelagic food webs, and deep-sea benthic communities.


2019 ◽  
Vol 99 (6) ◽  
pp. 905-916
Author(s):  
E.W. Bork ◽  
M.P. Lyseng ◽  
D.B. Hewins ◽  
C.N. Carlyle ◽  
S.X. Chang ◽  
...  

While northern temperate grasslands are important for supporting beef production, it remains unclear how grassland above- and belowground biomass responds to long-term cattle grazing. Here, we use a comprehensive dataset from 73 grasslands distributed across a broad agro-climatic gradient to quantify grassland shoot, litter, and shallow (top 30 cm) root biomass in areas with and without grazing. Additionally, we relate biomass to soil carbon (C) concentrations. Forb biomass was greater (p < 0.05) in grazed areas, particularly those receiving more rainfall. In contrast, grass and total aboveground herbage biomass did not differ with grazing (total: 2320 kg ha−1 for grazed vs. 2210 kg ha−1 for non-grazed; p > 0.05). Forb crude protein concentrations were lower (p < 0.05) in grazed communities compared with those that were non-grazed. Grasslands subjected to grazing had 56% less litter mass. Root biomass down to 30 cm remained similar between areas with (9090 kg ha−1) and without (7130 kg ha−1) grazing (p > 0.05). Surface mineral soil C concentrations were positively related to peak grassland biomass, particularly total (above + belowground) biomass, and with increasing forb biomass in grazed areas. Finally, total aboveground shoot biomass and soil C concentrations in the top 15 cm of soil were both positively related to the proportion of introduced plant diversity in grazed and non-grazed grasslands. Overall, cattle grazing at moderate stocking rates had minimal impact on peak grassland biomass, including above- and belowground, and a positive contribution exists from introduced plant species to maintaining herbage productivity and soil C.


1995 ◽  
Vol 40 (6) ◽  
pp. 1064-1076 ◽  
Author(s):  
T. Berman ◽  
L. Stone ◽  
Y. Z. Yacobi ◽  
B. Kaplan ◽  
Al. Schlichter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document