scholarly journals Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins

2018 ◽  
Vol 20 (3) ◽  
Author(s):  
L. Babout ◽  
K. Grudzień ◽  
J. Wiącek ◽  
M. Niedostatkiewicz ◽  
B. Karpiński ◽  
...  
Author(s):  
Sougueh Cheik ◽  
Pascal Jouquet ◽  
Jean‐Luc Maeght ◽  
Yvan Capowiez ◽  
T.M. Tran ◽  
...  

2013 ◽  
Author(s):  
Juan Carlos Quezada ◽  
Gilles Saussine ◽  
Pierre Breul ◽  
Farhang Radjai

2021 ◽  
Vol 9 ◽  
Author(s):  
Mengzhou Li ◽  
Feng-Lei Fan ◽  
Wenxiang Cong ◽  
Ge Wang

The energy spectrum of an X-ray tube plays an important role in computed tomography (CT), and is often estimated from physical measurement of dedicated phantoms. Usually, this estimation problem is reduced to solving a system of linear equations, which is generally ill-conditioned. In this paper, we optimize a phantom design to find the most effective combinations of thicknesses for different materials. First, we analyze the ill-posedness of the energy spectrum inversion when the number of unknown variables (N) and measurements (M) are equal, and show the condition number of the system matrix increases exponentially with N if the transmission thicknesses are linearly changed. Then, we present a genetic optimization algorithm to minimize the condition number of the system matrix in a general case (M < N) with respect to the selection of thicknesses and types of phantom materials. Finally, in the simulation with Poisson noise we study the accuracy of the spectrum estimation using the expectation-maximum algorithm. Our results indicate that the proposed method allows high-quality spectrum estimation, and the number of measurements is reduced over two thirds of that required by the widely-used method using a phantom with linearly-changed thicknesses.


1993 ◽  
Author(s):  
Lewis E. Berman ◽  
Babak Nouri ◽  
Gautam Roy ◽  
Leif Neve

2018 ◽  
Vol 43 (9) ◽  
pp. 2042 ◽  
Author(s):  
Toshiki Tamura ◽  
Goki Arai ◽  
Yoshiki Kondo ◽  
Hiroyuki Hara ◽  
Tadashi Hatano ◽  
...  

2018 ◽  
Vol 27 (10) ◽  
pp. 1844011 ◽  
Author(s):  
José M. Martí ◽  
Manel Perucho ◽  
José L. Gómez ◽  
Antonio Fuentes

Recollimation shocks (RS) appear associated with relativistic flows propagating through pressure mismatched atmospheres. Astrophysical scenarios invoking the presence of such shocks include jets from AGNs and X-ray binaries and GRBs. We shall start reviewing the theoretical background behind the structure of RS in overpressured jets. Next, basing on numerical simulations, we will focus on the properties of RS in relativistic steady jets threaded by helical magnetic fields depending on the dominant type of energy. Synthetic radio maps from the simulation of the synchrotron emission for a selection of models in the context of parsec-scale extragalactic jets will also be discussed.


2005 ◽  
Vol 876 ◽  
Author(s):  
Patrick Huber ◽  
Klaus Knorr

AbstractWe present a selection of x-ray diffraction patterns of spherical (He, Ar), dumbbell- (N2, CO), and chain-like molecules (n-C9H20, n-C19H40) solidified in nanopores of silica glass (mean pore diameter 7nm). These patterns allow us to demonstrate how key principles governing crystallization have to be adapted in order to accomplish solidification in restricted geometries. 4He, Ar, and the spherical close packed phases of CO and N2 adjust to the pore geometry by introducing a sizeable amount of stacking faults. For the pore solidified, medium-length chainlike n-C19H40 we observe a close packed structure without lamellar ordering, whereas for the short-chain C9H20 the layering principle survives, albeit in a modified fashion compared to the bulk phase.


Sign in / Sign up

Export Citation Format

Share Document