Influence of hydrate participation on the mechanical behaviour of fine-grained sediments under one-dimensional compression: a DEM study

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Tao Li ◽  
Liqing Li ◽  
Jingjin Liu ◽  
Haizuo Zhou
Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA149-WA161 ◽  
Author(s):  
Jesse E. Dickinson ◽  
D. R. Pool ◽  
R. W. Groom ◽  
L. J. Davis

An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately [Formula: see text] in areas of thick conductive silt and clay and to depths of [Formula: see text] in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of [Formula: see text]) coarse-grained sediments along basin margins and conductive (mean of [Formula: see text]) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.


1990 ◽  
Vol 116 (5) ◽  
pp. 838-850
Author(s):  
M. Arslan Tekinsoy ◽  
Tefaruk Haktanir
Keyword(s):  

1995 ◽  
Vol 10 (6) ◽  
pp. 1418-1423 ◽  
Author(s):  
B.W. Lee ◽  
K.H. Auh

Dielectric properties of polycrystalline BaTiO3 ceramics having grain sizes of 1 to 40 μm have been studied. Fine-grained ceramic BaTiO3 of 1 μm average grain size has 90°domains and has shown higher dielectric constant, lower ferroelectric transition temperature (Tc), and lower transition energy than coarser-grained material. 90°domain switching was preferentially produced in the fine-grained BaTiO3 as a result of abrasion. For the fine-grained BaTiO3, the dielectric constant decreased with one-dimensional pressure, whereas, for the coarse-grained material, the dielectric constant increased before decreasing with the pressure. The one-dimensional pressure resulted in increased Tc of both the fine- and coarse-grained BaTiO3, with the effect being the greatest for the coarse-grained material. The relationship between these results and internal stress, and the effect of external pressure imposed on internally stressed lattice, were discussed.


1996 ◽  
Vol 33 (4) ◽  
pp. 529-537 ◽  
Author(s):  
K D Eigenbrod

Soft, fine-grained soils were exposed to cyclic one-dimensional, open-system freezing and thawing, resulting in maximum volume changes of up to 30%, depending on the initial moisture content and plasticity of the clay as well as on the rate of freezing. A linear relationship between the net volume changes subsequent to freezing and thawing and the liquidity index prior to freezing and thawing was obtained. This correlation is not unique, but depends on rate and mode of freezing. Thus, settlements from freeze–thaw consolidation in the field can be predicted from such tests if the rate and mode of freezing are the same as in the field. During cyclic freezing and thawing the soils became fissured and jointed, resulting for most clays in large increases in their bulk permeabilities, which increased with an increasing number of freeze–thaw cycles, often by more than two orders of magnitude. For some materials, however, little change in permeability occured. Key words: cyclic freeze–thaw, clays, freeze–thaw consolidation, permeability, volume changes.


1998 ◽  
Vol 15 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Ahmad Pouya ◽  
Irini Djéran-Maigre ◽  
Violaine Lamoureux-Var ◽  
Daniel Grunberger

Author(s):  
Huizhao Wang ◽  
Guanfeng Liu ◽  
An Liu ◽  
Zhixu Li ◽  
Kai Zheng

The conventional methods for the next-item recommendation are generally based on RNN or one- dimensional attention with time encoding. They are either hard to preserve the long-term dependencies between different interactions, or hard to capture fine-grained user preferences. In this paper, we propose a Double Most Relevant Attention Network (DMRAN) that contains two layers, i.e., Item level Attention and Feature Level Self- attention, which are to pick out the most relevant items from the sequence of user’s historical behaviors, and extract the most relevant aspects of relevant items, respectively. Then, we can capture the fine-grained user preferences to better support the next-item recommendation. Extensive experiments on two real-world datasets illustrate that DMRAN can improve the efficiency and effectiveness of the recommendation compared with the state-of-the-art methods.


2019 ◽  
Vol 56 (3) ◽  
pp. 320-334 ◽  
Author(s):  
Alain El Howayek ◽  
Antonio Bobet ◽  
Marika Santagata

This paper presents an investigation of the microstructure and cementation of two carbonatic fine-grained soils obtained from a deposit of lacustrine origin formed during the Wisconsin glaciation. The two soils differ in the degree of cementation (with average total carbonate contents of ∼55% and ∼38%), the dominating carbonate mineral (calcite versus dolomite), and the forms of carbonates present. The study is founded on observations of the microstructure using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray (EDX) spectrometry, and examination of the effects of carbonate dissolution on Atterberg limits and particle-size distribution. In both soils, the majority of the carbonate is in the form of a coating layer on the clay and silt particles, with a thickness less than 2–3 μm, and decreasing in the sample with lower carbonate content. This coating layer “networks” particles and groups of particles. Carbonate cementation impacts the engineering properties of both soils, and the site’s overconsolidation ratio (OCR) profile clearly reflects changes in carbonate content and microstructure. One-dimensional compression tests show that cementation is associated with a moderate degree of structuring, and that the resulting structure is stable, with no complete destructuration occurring even after the effective stress exceeds 10 times the preconsolidation stress.


Sign in / Sign up

Export Citation Format

Share Document