Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

2002 ◽  
Vol 10 (2) ◽  
pp. 278-295 ◽  
Author(s):  
Craig Simmons ◽  
Kumar Narayan ◽  
Juliette Woods ◽  
Andrew Herczeg
2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2021 ◽  
Author(s):  
Liqun Jiang ◽  
Ronglin Sun ◽  
Xing Liang

<p>Protection and management of groundwater resources demand high-resolution distributions of hydraulic parameters (e.g., hydraulic conductivity (K) and specific storage (Ss)) of aquifers. In the past, these parameters were obtained by traditional analytical solutions (e.g., Theis (1935) or Cooper and Jacob (1946)). However, traditional methods assume the aquifer to be homogeneous and yield the equivalent parameter, which are averages over a large volume and are insufficient for predicting groundwater flow and solute transport process (Butler & Liu, 1993). For obtaining the aquifer heterogeneity, some scholars have used kriging (e.g., Illman et al., 2010) and hydraulic tomography (HT) (e.g., Yeh & Liu, 2000; Zhu & Yeh, 2005) to describe the K distribution.</p><p>In this study, the laboratory heterogeneous aquifer sandbox is used to investigate the effect of different hydraulic parameter estimation methods on predicting groundwater flow and solute transport process. Conventional equivalent homogeneous model, kriging and HT are used to characterize the heterogeneity of sandbox aquifer. A number of the steady-state head data are collected from a series of single-hole pumping tests in the lab sandbox, and are then used to estimate the K fields of the sandbox aquifer by the steady-state inverse modeling in HT survey which was conducted using the SimSLE algorithm (Simultaneous SLE, Xiang et al., 2009), a built-in function of the software package of VSAFT2. The 40 K core samples from the sandbox aquifer are collected by the Darcy experiments, and are then used to obtain K fields through kriging which was conducted using the software package of Surfer 13. The role of prior information on improving HT survey is then discussed. The K estimates by different methods are used to predict the process of steady-state groundwater flow and solute transport, and evaluate the merits and demerits of different methods, investigate the effect of aquifer heterogeneity on groundwater flow and solute transport.</p><p>According to lab sandbox experiments results, we concluded that compared with kriging, HT can get higher precision to characterize the aquifer heterogeneity and predict the process of groundwater flow and solute transport. The 40 K fields from the K core samples are used as priori information of HT survey can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.</p>


2010 ◽  
Vol 52 (4) ◽  
pp. 333-334
Author(s):  
Shin-ichi ONODERA ◽  
Akinobu MIYAKOSHI

Sign in / Sign up

Export Citation Format

Share Document