scholarly journals Numerical Simulation of Groundwater Flow and Solute Transport in a Karst Aquifer with Conduits

Author(s):  
Bill X. Hu ◽  
Zexuan Xu
2012 ◽  
Vol 588-589 ◽  
pp. 1278-1281
Author(s):  
Jun Pan ◽  
Shi Xiao Li ◽  
Chang Liu ◽  
Yang Li

More and more people have take more attention on the problem like Seawater intrusion, The same floor recharge and "heat transfixion". This article has established the groundwater flow and solute transport and temperature coupling numerical model,to simulate the underground water temperature’s change by changing the wells’ spacing manner. Simulation results show that the two kinds of disposing Wells solutions are not cause seawater invasion, the second disposing Wells scheme help to prevent the occurrence of seawater invasion.


2015 ◽  
Vol 19 (2) ◽  
pp. 893-912 ◽  
Author(s):  
S. Oehlmann ◽  
T. Geyer ◽  
T. Licha ◽  
M. Sauter

Abstract. Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributed numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south-western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software COMSOL Multiphysics® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is possible not only to derive a consistent flow and transport model for a 150 km2 karst area but also to combine the use of groundwater flow and transport parameters thereby greatly reducing model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m3.


2014 ◽  
Vol 11 (8) ◽  
pp. 9281-9326
Author(s):  
S. Oehlmann ◽  
T. Geyer ◽  
T. Licha ◽  
M. Sauter

Abstract. Assessing the hydraulic parameters of karst aquifers is a challenge due to their high degree of heterogeneity. The unknown parameter field generally leads to a high ambiguity for flow and transport calibration in numerical models of karst aquifers. In this study, a distributive numerical model was built for the simulation of groundwater flow and solute transport in a highly heterogeneous karst aquifer in south western Germany. Therefore, an interface for the simulation of solute transport in one-dimensional pipes was implemented into the software Comsol Multiphysics® and coupled to the three-dimensional solute transport interface for continuum domains. For reducing model ambiguity, the simulation was matched for steady-state conditions to the hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as the hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyse the influence of the respective geometric and hydraulic parameters and develop a calibration approach in a large-scale heterogeneous karst system. Results show that it is not only possible to derive a consistent flow and transport model for a 150 km2 karst area, but that the combined use of groundwater flow and transport parameters greatly reduces model ambiguity. The approach provides basic information about the conduit network not accessible for direct geometric measurements. The conduit network volume for the main karst spring in the study area could be narrowed down to approximately 100 000 m3.


Author(s):  
Medhat El-Bihery ◽  
Abdel Aziz Al-Mushikhi ◽  
Salim Al-khanbashi ◽  
Ahmed Al Saeedi ◽  
Ali Mohsin Al-Lawati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document