High-gain and low-noise-figure erbium-doped fiber amplifier employing dual stage quadruple pass technique

2010 ◽  
Vol 17 (3) ◽  
pp. 100-102 ◽  
Author(s):  
Belloui Bouzid
2005 ◽  
Vol 2 (5) ◽  
pp. 154-158 ◽  
Author(s):  
V. Sinivasagam ◽  
Mustafa A. G. Abushagur ◽  
K. Dimyati ◽  
F. Tumiran

2012 ◽  
Author(s):  
Sulaiman Wadi Harun ◽  
Harith Ahmad

Sebuah esperimen bagi menambah daya pembesaran untuk jalur gelombang panjang (jalur–L) pembesar terdop erbium (PTE) telah didemonstrasi menggunakan reka bentuk yang berbadan dua. Jika dibandingkan dengan pembesar yang berbadan satu, pembesar ini dapat menambah pembesaran untuk isyarat 1580 nm sebanyak 5.5 dB dengan sedikit sahaja penambahan nilai bisingan. Nilai bisingan bertambah sebanyak 0.3 dB kerana kemasukan isolator dalam reka bentuk. Kadar kuasa pam pertama mestilah 33% daripada jumlah keseluruhan kuasa pam untuk nilai optima. Pembesaran maksimum sebanyak 8.3 dB telah diperolehi oleh isyarat 1568 nm semasa kuasa isyarat dan kuasa pam, masing–masing ditetapkan pada 30 dBm dan 92 mW. Keputusan esperimen menunjukkan penggunaan pembesar berbadan dua dapat menjimatkan kos kerana ia menggunakan kuasa pam yang lebih rendah. Kata kunci: Gentian terdop erbium, pembesar optik, pembesar terdop erbium, jalus LPTE An experiment on gain enhancement in the long–wavelength band erbium–doped fiber amplifier (L–band EDFA) is demonstrated using a dual stage configuration. Compared to a conventional single–stage amplifier, the small signal gain for a 1580 nm signal can be improved by 5.5 dB without paying much noise figure penalty. The corresponding noise figure penalty was 0.3 dB due to the insertion loss of the optical isolator. The optimum pump power ratio for the first pump was experimentally determined to be 33%. The maximum gain improvement of 8.3 dB was obtained at a signal wavelength of 1568 nm while signal and total pump powers were fixed at –30 dBm and 92 mW, respectively. These results show that the employment of the dual–stage amplifier system will play an important role in the development of a practical L–band EDFA from the perspective of economical usage of pump power. Key words: Erbium doped fiber, optical amplifier, L-band EDFA, dual-stage EDFA, amlified spontaneous emission


1970 ◽  
Vol 4 (1) ◽  
Author(s):  
S. W. Harun and H. Ahmad

An experiment on gain enhancement in the long wavelength band erbium doped fiber amplifier (L-band EDFA) is demonstrated. It uses a dual stage technique with dual forward pumping scheme. Compared to a conventional single stage amplifier, the small signal gain for 1580nm signal can be improved by 5.5dB without paying much noise figure penalty. The corresponding noise figure penalty was 0.3dB due to the insertion loss of the optical isolator. The optimum pump power ratio for the first pump is experimentally determined to be 33%. The maximum gain improvement of 8.3dB was obtained at a signal wavelength of 1568nm while signal and total pump powers were fixed at -30dBm and 92mW, respectively. The employment of dual stage amplifier system seems to play an important role in the development of practical L-band EDFA from the perspective of economical usage of pump power.Key Words:  erbium doped fibre; optical amplifier; L-band EDFA; dual stage EDFA; amplified spontaneous emission


2005 ◽  
Vol 13 (12) ◽  
pp. 4519 ◽  
Author(s):  
L. L. Yi ◽  
L. Zhan ◽  
C. S. Taung ◽  
S. Y. Luo ◽  
W. S. Hu ◽  
...  

Author(s):  
Belloui Bouzid

In this chapter, I propose a comprehensive study of erbium-doped fiber amplifier (EDFA) and erbium doped fiber laser (EDFL). The chapter is based on three principal levels: the first is at the atomic level, where it is evident and meaningful to give general and deep studies on erbium spectra at theoretical background angle. The important part that needs to be understood in the erbium is its energy level splitting and lasing. The second level is based on the EDFA and EDFL critical, where many research papers have been reviewed to show and clarify their strong and weak side at different views. To specify the weakness of the classical EDFA and EDFL, and to describe the future generations and its characteristics, it is very important to review the recent published papers and books. At the experimental level a full investigation is given. Vast and new designs were invented showing high-gain and low-noise-figure (NF) utilizing a new technique called double pass with filter. An efficient amplification occurs at the signal wavelength of 1550 nm when it travels along the design quadruple pass double stages with filter amplifier (QPDSF). The highest gain of 62.56 dB with a low NF of 3.98 dB was achieved for an input signal power of -50 dBm and pump powers of 10 and 165 mW in the second and first stage amplifiers respectively. This important result shows also, a large difference of 40 dB gain between the QPDSF and the single stage single pass (SPSS) EDFA configuration. This design is used to show high gain of 62.56 dB compared to SPSS which records only 20 dB. A higher power and wider spectrum of ASE is observed for the double pass compared with single pass. A comparative investigation is presented and analyzed for various configurations. At the end, a high output power EDFL configuration is reported. It incorporates a double stages linear cavity with fiber loopback and a tunable bandpass filter TBF. The configuration increases the output power by suppressing the amplified spontaneous emission and achieves a highly stable output power of more than 18 dBm at 1560 nm. A standard spectrum is attained with TBF adjustment.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Yupapin

AbstractThis paper has simulated the pump laser automatic signal control for erbium-doped fiber amplifier gain, noise figure, and output spectral power. Signal gain and noise figure are deeply studied in relation to laser pump power variations at operating pumping wavelengths of 980 nm and 1,480 nm for previous and proposed models. Similar to the study of the light signal to noise ratio, output power level and maximum Q factor are also simulated versus EDFA amplifier length at pumping power of 500 mW and different pumping wavelength by using the proposed model. The obtained results are better by using a pumping wavelength of 1,480 nm than a pumping wavelength of 980 nm. The optimum EDFA amplifier is 5 m, which gives better performance than other amplifier lengths.


Author(s):  
Sami D. Alaruri

In this work, a single-stage C-band erbium-doped fiber amplifier (EDFA) has been constructed and characterized. Gain (G) and noise figure (NF) measurements collected for the C-band EDFA as a function of wavelength (1528.8 to 1562.3 nm) and laser pump powers are discussed. Further, the EDFA conversion efficiency (CE) as a function of laser pump powers is presented. Simplified mathematical expressions for the EDFA gain, NF, and CE are provided. The C-band EDFA signal gain remained flat in the spectral region 1539 to 1562 nm. Moreover, the C-band EDFA NF increased with wavelength and decreased with the 1480 nm laser pump powers. Additionally, the C-band EDFA maximum achieved conversion efficiency and signal gain is 22.64% at P1=19.49 mW and 22.6 dB at 1531.1 nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document